Suppr超能文献

基本酶反应的近平衡弛豫动力学的通用数学公式及其在寻找构象选择步骤中的应用。

General mathematical formula for near equilibrium relaxation kinetics of basic enzyme reactions and its applications to find conformational selection steps.

机构信息

Department of Biochemistry, Albert Einstein College of Medicine, United States.

出版信息

Math Biosci. 2019 Jul;313:61-70. doi: 10.1016/j.mbs.2019.03.007. Epub 2019 Mar 29.

Abstract

A general mathematical formula of basic enzyme reactions was derived with nearly no dependence on conditions nor assumptions on relaxation kinetic processes near equilibrium in a simple single-substrate-single-product enzyme reaction. The new formula gives precise relationships between the rate constants of the elementary reaction steps and the apparent relaxation rate constant, rather than the initial velocity that is generally used to determine enzymatic parameters according to the Michaelis-Menten theory. The present formula is shown to be complementary to the Michaelis-Menten formulae in a sense that the initial velocity and the relaxation rate constant data together could determine the enzyme-substrate dissociation constant K, which has been usually conditionally approximated by the Michaelis constant K within the framework of the Michaelis-Menten formulae. We also describe relaxation kinetics of enzyme reactions that include the conformational selection processes, in which only one enzymatic conformer among a conformational ensemble can bind with either the substrate or product. The present mathematical approaches, together with numerical computation analyses, suggested that the presence of conformational selection steps in enzymatic reactions can be experimentally detected simply by enzymatic assays with catalytic amounts of enzyme.

摘要

本文导出了一个基本酶反应的通用数学公式,该公式几乎不依赖于条件,也不依赖于平衡附近松弛动力学过程的假设,适用于简单的单底物单产物酶反应。新公式给出了基元反应步骤的速率常数与表观松弛速率常数之间的精确关系,而不是根据米氏-门坦理论通常用于确定酶参数的初速度。本公式与米氏-门坦公式在某种意义上是互补的,即初速度和松弛速率常数数据可以一起确定酶-底物解离常数 K,而在米氏-门坦公式的框架内,通常条件性地用米氏常数 K 来近似。我们还描述了包括构象选择过程的酶反应的松弛动力学,其中构象集合中只有一种酶构象可以与底物或产物结合。本数学方法与数值计算分析相结合,表明酶反应中构象选择步骤的存在可以通过催化量的酶的酶促测定实验来简单地检测到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/6792049/e83324378bb0/nihms-1529972-f0001.jpg

相似文献

2
Michaelis-Menten equation for degradation of insoluble substrate.米氏方程降解不溶性底物。
Math Biosci. 2018 Feb;296:93-97. doi: 10.1016/j.mbs.2017.11.011. Epub 2018 Jan 9.
3
Description of enzyme kinetics in reversed micelles. 1. Theory.反胶束中酶动力学的描述。1. 理论。
Eur J Biochem. 1990 Jan 12;187(1):59-72. doi: 10.1111/j.1432-1033.1990.tb15277.x.
4
Dependence of the Enzymatic Velocity on the Substrate Dissociation Rate.酶促速度对底物解离速率的依赖性。
J Phys Chem B. 2017 Apr 20;121(15):3437-3442. doi: 10.1021/acs.jpcb.6b09055. Epub 2016 Dec 1.
5
Single-molecule Michaelis-Menten equations.单分子米氏方程。
J Phys Chem B. 2005 Oct 20;109(41):19068-81. doi: 10.1021/jp051490q.
6
Enzyme dynamics from NMR spectroscopy.核磁共振波谱法研究酶动力学
Acc Chem Res. 2015 Feb 17;48(2):457-65. doi: 10.1021/ar500340a. Epub 2015 Jan 9.
8
Modeling of uncertainties in biochemical reactions.生化反应不确定性建模。
Biotechnol Bioeng. 2011 Feb;108(2):413-23. doi: 10.1002/bit.22932.

本文引用的文献

2
Essential role of conformational selection in ligand binding.构象选择在配体结合中的基本作用。
Biophys Chem. 2014 Feb;186:13-21. doi: 10.1016/j.bpc.2013.09.003. Epub 2013 Sep 25.
4
Conformational selection in trypsin-like proteases.胰蛋白酶样蛋白酶的构象选择。
Curr Opin Struct Biol. 2012 Aug;22(4):421-31. doi: 10.1016/j.sbi.2012.05.006. Epub 2012 Jun 3.
10
Conformational selection or induced fit: a flux description of reaction mechanism.构象选择或诱导契合:反应机制的通量描述
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13737-41. doi: 10.1073/pnas.0907195106. Epub 2009 Jul 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验