Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814.
Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849.
J Biol Chem. 2010 May 14;285(20):15450-15463. doi: 10.1074/jbc.M109.080994. Epub 2010 Mar 4.
Direct synthesis and cleavage of acetyl-CoA are carried out by the bifunctional CO dehydrogenase/acetyl-CoA synthase enzyme in anaerobic bacteria and by the acetyl-CoA decarbonylase/synthase (ACDS) multienzyme complex in Archaea. In both systems, a nickel- and Fe/S-containing active site metal center, the A cluster, catalyzes acetyl C-C bond formation/breakdown. Carbonyl group exchange of [1-(14)C]acetyl-CoA with unlabeled CO, a hallmark of CODH/ACS, is weakly active in ACDS, and exchange with CO(2) was up to 350 times faster, indicating tight coupling of CO release at the A cluster to CO oxidation to CO(2) at the C cluster in CO dehydrogenase. The basis for tight coupling was investigated by analysis of three recombinant A cluster proteins, ACDS beta subunit from Methanosarcina thermophila, acetyl-CoA synthase of Carboxydothermus hydrogenoformans (ACS(Ch)), and truncated ACS(Ch) lacking its 317-amino acid N-terminal domain. A comparison of acetyl-CoA synthesis kinetics, CO exchange, acetyltransferase, and A cluster Ni(+)-CO EPR characteristics demonstrated a direct role of the ACS N-terminal domain in promoting acetyl C-C bond fragmentation. Protein conformational changes, related to "open/closed" states previously identified crystallographically, were indicated to have direct effects on the coordination geometry and stability of the A cluster Ni(2+)-acetyl intermediate, controlling Ni(2+)-acetyl fragmentation and Ni(2+)(CO)(CH(3)) condensation. EPR spectral changes likely reflect variations in the Ni(+)-CO equatorial coordination environment in closed buried hydrophobic and open solvent-exposed states. The involvement of subunit-subunit interactions in ACDS, versus interdomain contacts in ACS, ensures that CO is not released from the ACDS beta subunit in the absence of appropriate interactions with the alpha(2)epsilon(2) CO dehydrogenase component. The resultant high efficiency CO transfer explains the low rate of CO exchange relative to CO(2).
在厌氧细菌中,双功能一氧化碳脱氢酶/乙酰辅酶 A 合酶和古菌中的乙酰辅酶 A 脱羧酶/合成酶(ACDS)多酶复合物分别直接合成和裂解乙酰辅酶 A。在这两个系统中,一个镍和 Fe/S 含有活性位点金属中心,即 A 簇,催化乙酰 C-C 键的形成/断裂。[1-(14)C]乙酰辅酶 A 与未标记 CO 的羰基交换,这是 CODH/ACS 的一个标志,在 ACDS 中活性较弱,与 CO2 的交换速度高达 350 倍,这表明在 A 簇中 CO 的释放与在 CO 脱氢酶的 C 簇中 CO 的氧化紧密偶联。通过分析三种重组 A 簇蛋白,即来自 Methanosarcina thermophila 的 ACDS β亚基、Carboxydothermus hydrogenoformans 的乙酰辅酶 A 合酶(ACS(Ch))和缺少其 317 个氨基酸 N 端结构域的截短 ACS(Ch),研究了紧密偶联的基础。乙酰辅酶 A 合成动力学、CO 交换、乙酰转移酶和 A 簇 Ni(+)-CO EPR 特性的比较表明,ACS N 端结构域在促进乙酰 C-C 键断裂中起着直接作用。与先前在晶体学中确定的“打开/关闭”状态相关的蛋白质构象变化表明,它们对 A 簇 Ni(2+)-乙酰中间物的配位几何形状和稳定性有直接影响,控制 Ni(2+)-乙酰的断裂和 Ni(2+)(CO)(CH(3))的缩合。EPR 光谱的变化可能反映了在封闭的埋入式疏水环境和开放的溶剂暴露状态下 Ni(+)-CO 赤道配位环境的变化。在 ACDS 中涉及亚基-亚基相互作用,而在 ACS 中涉及结构域间接触,这确保了在没有与 α2ε2 CO 脱氢酶成分适当相互作用的情况下,CO 不会从 ACDS β亚基中释放出来。由此产生的高效 CO 转移解释了与 CO2 相比 CO 交换率较低的原因。