Nguyen Hoang Anh, Tura Ali
Department of Geophysics, Colorado School of Mines, Golden, CO, 80401, USA.
Sci Rep. 2025 May 23;15(1):17984. doi: 10.1038/s41598-025-01188-8.
This study demonstrates the application of quantum computing based quantum annealing to seismic traveltime inversion, a critical approach for inverting highly accurate velocity models. The seismic inversion problem is first converted into a Quadratic Unconstrained Binary Optimization problem, which the quantum annealer is specifically designed to solve. We then solve the problem via quantum annealing method. The inversion is applied on a synthetic velocity model, presenting a carbon storage scenario at depths of 1000-1300 m. As an application example, we also show the capacity of quantum computing to handle complex, noisy data environments. This work highlights the emerging potential of quantum computing in geophysical applications, providing a foundation for future developments in high-precision seismic imaging.
本研究展示了基于量子计算的量子退火在地震走时反演中的应用,地震走时反演是反演高精度速度模型的关键方法。首先将地震反演问题转化为二次无约束二进制优化问题,而量子退火器正是专门为解决该问题而设计的。然后我们通过量子退火方法解决该问题。该反演应用于一个合成速度模型,呈现了深度在1000 - 1300米处的碳储存场景。作为一个应用实例,我们还展示了量子计算处理复杂、有噪声数据环境的能力。这项工作突出了量子计算在地球物理应用中的新兴潜力,为未来高精度地震成像的发展奠定了基础。