Suppr超能文献

一种用于调节心肌细胞功能的光遗传学和生物电子学综合平台。

An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function.

机构信息

Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.

Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA.

出版信息

Adv Sci (Weinh). 2024 Sep;11(36):e2402236. doi: 10.1002/advs.202402236. Epub 2024 Jul 25.

Abstract

Bioelectronic medicine is emerging as a powerful approach for restoring lost endogenous functions and addressing life-altering maladies such as cardiac disorders. Systems that incorporate both modulation of cellular function and recording capabilities can enhance the utility of these approaches and their customization to the needs of each patient. Here we report an integrated optogenetic and bioelectronic platform for stable and long-term stimulation and monitoring of cardiomyocyte function in vitro. Optical inputs are achieved through the expression of a photoactivatable adenylyl cyclase, that when irradiated with blue light causes a dose-dependent and time-limited increase in the secondary messenger cyclic adenosine monophosphate with subsequent rise in autonomous cardiomyocyte beating rate. Bioelectronic readouts are obtained through a multi-electrode array that measures real-time electrophysiological responses at 32 spatially-distinct locations. Irradiation at 27 µW mm results in a 14% elevation of the beating rate within 20-25 min, which remains stable for at least 2 h. The beating rate can be cycled through "on" and "off" light states, and its magnitude is a monotonic function of irradiation intensity. The integrated platform can be extended to stretchable and flexible substrates, and can open new avenues in bioelectronic medicine, including closed-loop systems for cardiac regulation and intervention, for example, in the context of arrythmias.

摘要

生物电子医学正在成为一种强大的方法,可以恢复失去的内源性功能,并解决改变生活的疾病,如心脏疾病。结合细胞功能调节和记录功能的系统可以增强这些方法的实用性,并使其适应每个患者的需求。在这里,我们报告了一个集成的光遗传学和生物电子平台,用于在体外稳定和长期刺激和监测心肌细胞功能。光学输入是通过表达光激活的腺苷酸环化酶来实现的,当用蓝光照射时,它会导致第二信使环磷酸腺苷产生剂量依赖性和时间限制的增加,随后自主心肌细胞跳动率升高。生物电子读数是通过一个多电极阵列获得的,该阵列可在 32 个空间上不同的位置测量实时电生理响应。在 27µWmm 的辐照下,跳动率在 20-25 分钟内升高 14%,至少稳定 2 小时。跳动率可以在“开”和“关”光状态之间循环,其幅度是辐照强度的单调函数。该集成平台可以扩展到可拉伸和灵活的基板,并可以在生物电子医学中开辟新的途径,包括用于心脏调节和干预的闭环系统,例如在心律失常的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2113/11423186/568dd6208226/ADVS-11-2402236-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验