Suppr超能文献

协调随机起源的点火与定义的复制定时。

Reconciling stochastic origin firing with defined replication timing.

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

出版信息

Chromosome Res. 2010 Jan;18(1):35-43. doi: 10.1007/s10577-009-9093-3.

Abstract

Eukaryotic chromosomes replicate with defined timing patterns. However, the mechanism that regulates the timing of replication is unknown. In particular, there is an apparent conflict between population experiments, which show defined average replication times, and single-molecule experiments, which show that origins fire stochastically. Here, we provide a simple simulation that demonstrates that stochastic origin firing can produce defined average patterns of replication firing if two criteria are met. The first is that origins must have different relative firing probabilities, with origins that have relatively high firing probability being likely to fire in early S phase and origins with relatively low firing probability being unlikely to fire in early S phase. The second is that the firing probability of all origins must increase during S phase to ensure that origins with relatively low firing probability, which are unlikely to fire in early S phase, become likely to fire in late S phase. In addition, we propose biochemically plausible mechanisms for these criteria and point out how stochastic and defined origin firing can be experimentally distinguished in population experiments.

摘要

真核染色体具有特定的复制时间模式。然而,调控复制时间的机制尚不清楚。特别是,群体实验表明存在明确的平均复制时间,而单分子实验表明复制起点随机发射,这两者之间存在明显的矛盾。在这里,我们提供了一个简单的模拟,表明如果满足两个条件,随机复制起点发射可以产生明确的平均复制发射模式。第一个条件是复制起点必须具有不同的相对发射概率,相对发射概率较高的复制起点可能在早 S 期发射,而相对发射概率较低的复制起点不太可能在早 S 期发射。第二个条件是所有复制起点的发射概率必须在 S 期增加,以确保相对发射概率较低的复制起点(不太可能在早 S 期发射)在晚 S 期变得可能发射。此外,我们提出了这些条件的生化上合理的机制,并指出了在群体实验中如何区分随机和确定的复制起点发射。

相似文献

3
DNA replication origins fire stochastically in fission yeast.在裂殖酵母中,DNA复制起点随机激活。
Mol Biol Cell. 2006 Jan;17(1):308-16. doi: 10.1091/mbc.e05-07-0657. Epub 2005 Oct 26.

引用本文的文献

2
Genome replication in asynchronously growing microbial populations.微生物群体的非同步生长中的基因组复制。
PLoS Comput Biol. 2024 Jan 5;20(1):e1011753. doi: 10.1371/journal.pcbi.1011753. eCollection 2024 Jan.
3
The location and development of Replicon Cluster Domains in early replicating DNA.早期复制DNA中复制子簇结构域的定位与发育
Wellcome Open Res. 2023 Aug 22;8:158. doi: 10.12688/wellcomeopenres.18742.2. eCollection 2023.
6
Rif1-Dependent Control of Replication Timing.Rif1依赖性的复制时间控制。
Genes (Basel). 2022 Mar 20;13(3):550. doi: 10.3390/genes13030550.

本文引用的文献

2
Control of DNA replication by anomalous reaction-diffusion kinetics.通过异常反应扩散动力学控制DNA复制
Phys Rev Lett. 2009 Apr 17;102(15):158104. doi: 10.1103/PhysRevLett.102.158104. Epub 2009 Apr 16.
7
How Xenopus laevis embryos replicate reliably: investigating the random-completion problem.非洲爪蟾胚胎如何可靠地进行复制:探究随机完成问题。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 1):041917. doi: 10.1103/PhysRevE.78.041917. Epub 2008 Oct 27.
10
The Hsk1(Cdc7) replication kinase regulates origin efficiency.Hsk1(Cdc7)复制激酶调节起始点效率。
Mol Biol Cell. 2008 Dec;19(12):5550-8. doi: 10.1091/mbc.e08-06-0645. Epub 2008 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验