Suppr超能文献

通过光学复制映射对人类 DNA 复制进行全基因组作图,支持真核复制的随机模型。

Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication.

机构信息

Institut Curie, PSL Research University, CNRS UMR 3244, Paris 75005, France.

Florida State University, Department of Biological Science, Tallahassee, FL 32306, USA.

出版信息

Mol Cell. 2021 Jul 15;81(14):2975-2988.e6. doi: 10.1016/j.molcel.2021.05.024. Epub 2021 Jun 21.

Abstract

The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.

摘要

真核生物复制动力学的异质性和单个起始位点的低效率使得在人类细胞中定位和定时复制起始变得困难。为了解决这一挑战,我们开发了光学复制映射(ORM)这一高通量单分子方法,并将其用于绘制人类细胞中的早期起始事件。我们的数据具有单分子性质,并且在 2700 万个平均长度约为 300kb 的纤维上总共覆盖了人类基因组的 >2500 倍,这使我们能够非常有信心地识别起始位点及其触发概率。我们发现,人类复制起始的分布与富含可及染色质的异质分布的潜在起始复合物的低效随机激活一致。这些观察结果与起始定时调控的随机模型一致,并表明复制动力学的随机调控是真核复制的一个基本特征,从酵母到人都是保守的。

相似文献

1
Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication.
Mol Cell. 2021 Jul 15;81(14):2975-2988.e6. doi: 10.1016/j.molcel.2021.05.024. Epub 2021 Jun 21.
2
Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.
PLoS Genet. 2010 Sep 2;6(9):e1001092. doi: 10.1371/journal.pgen.1001092.
3
High-resolution replication profiles define the stochastic nature of genome replication initiation and termination.
Cell Rep. 2013 Nov 27;5(4):1132-41. doi: 10.1016/j.celrep.2013.10.014. Epub 2013 Nov 7.
5
Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome.
PLoS One. 2014 May 30;9(5):e98501. doi: 10.1371/journal.pone.0098501. eCollection 2014.
6
A chromatin structure-based model accurately predicts DNA replication timing in human cells.
Mol Syst Biol. 2014 Mar 28;10(3):722. doi: 10.1002/msb.134859.
8
Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major.
Cell Rep. 2016 Aug 9;16(6):1774-1786. doi: 10.1016/j.celrep.2016.07.007. Epub 2016 Jul 28.
9
[Regulation of DNA replication timing].
Mol Biol (Mosk). 2013 Jan-Feb;47(1):12-37. doi: 10.1134/s0026893312060118.
10
DNA replication origins fire stochastically in fission yeast.
Mol Biol Cell. 2006 Jan;17(1):308-16. doi: 10.1091/mbc.e05-07-0657. Epub 2005 Oct 26.

引用本文的文献

3
Cell cycle-dependent TICRR/TRESLIN and MTBP chromatin binding mechanisms and patterns.
Genome Biol. 2025 Jul 7;26(1):194. doi: 10.1186/s13059-025-03665-9.
4
BAHCC1 binds H4K20me1 to facilitate the MCM complex loading and DNA replication.
Nat Commun. 2025 Jul 1;16(1):5502. doi: 10.1038/s41467-025-61284-1.
5
Regulation of replication timing in Saccharomyces cerevisiae.
PLoS Comput Biol. 2025 Jun 2;21(6):e1013066. doi: 10.1371/journal.pcbi.1013066. eCollection 2025 Jun.
9
The Emergence of Nanofluidics for Single-Biomolecule Manipulation and Sensing.
Anal Chem. 2025 Apr 29;97(16):8641-8653. doi: 10.1021/acs.analchem.4c06684. Epub 2025 Apr 17.

本文引用的文献

1
Conformation of sister chromatids in the replicated human genome.
Nature. 2020 Oct;586(7827):139-144. doi: 10.1038/s41586-020-2744-4. Epub 2020 Sep 23.
2
Detection of base analogs incorporated during DNA replication by nanopore sequencing.
Nucleic Acids Res. 2020 Sep 4;48(15):e88. doi: 10.1093/nar/gkaa517.
3
FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing.
Genome Biol. 2020 May 26;21(1):125. doi: 10.1186/s13059-020-02013-3.
5
H2A.Z facilitates licensing and activation of early replication origins.
Nature. 2020 Jan;577(7791):576-581. doi: 10.1038/s41586-019-1877-9. Epub 2019 Dec 25.
6
Involvement of G-quadruplex regions in mammalian replication origin activity.
Nat Commun. 2019 Jul 22;10(1):3274. doi: 10.1038/s41467-019-11104-0.
7
Metazoan DNA replication origins.
Curr Opin Cell Biol. 2019 Jun;58:134-141. doi: 10.1016/j.ceb.2019.03.003. Epub 2019 Jun 11.
8
Thermodynamically stable and genetically unstable G-quadruplexes are depleted in genomes across species.
Nucleic Acids Res. 2019 Jul 9;47(12):6098-6113. doi: 10.1093/nar/gkz463.
9
Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads.
Nat Methods. 2019 May;16(5):429-436. doi: 10.1038/s41592-019-0394-y. Epub 2019 Apr 22.
10
Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.
Nature. 2018 Mar 1;555(7694):112-116. doi: 10.1038/nature25507. Epub 2018 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验