Suppr超能文献

使用归一化割算法对纤维轨迹进行聚类

Clustering Fiber Traces Using Normalized Cuts.

作者信息

Brun Anders, Knutsson Hans, Park Hae-Jeong, Shenton Martha E, Westin Carl-Fredrik

机构信息

Department. of Biomedical Engineering, Linköping University, Sweden.

出版信息

Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375. doi: 10.1007/b100265.

Abstract

In this paper we present a framework for unsupervised segmentation of white matter fiber traces obtained from diffusion weighted MRI data. Fiber traces are compared pairwise to create a weighted undirected graph which is partitioned into coherent sets using the normalized cut (N cut) criterion. A simple and yet effective method for pairwise comparison of fiber traces is presented which in combination with the N cut criterion is shown to produce plausible segmentations of both synthetic and real fiber trace data. Segmentations are visualized as colored stream-tubes or transformed to a segmentation of voxel space, revealing structures in a way that looks promising for future explorative studies of diffusion weighted MRI data.

摘要

在本文中,我们提出了一个用于对从扩散加权磁共振成像(MRI)数据中获取的白质纤维轨迹进行无监督分割的框架。将纤维轨迹进行两两比较以创建一个加权无向图,然后使用归一化割(N割)准则将其划分为连贯的集合。我们提出了一种简单而有效的纤维轨迹两两比较方法,该方法与N割准则相结合,被证明能够对合成和真实纤维轨迹数据产生合理的分割结果。分割结果可视化为彩色流管,或转换为体素空间的分割,以一种对扩散加权MRI数据的未来探索性研究看起来很有前景的方式揭示结构。

相似文献

1
Clustering Fiber Traces Using Normalized Cuts.使用归一化割算法对纤维轨迹进行聚类
Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375. doi: 10.1007/b100265.
7
Fiber tracking of brain white matter based on graph theory.基于图论的脑白质纤维追踪
Technol Health Care. 2015;23 Suppl 1:S3-8. doi: 10.3233/thc-150921.
9
Segmentation of Laser Point Clouds in Urban Areas by a Modified Normalized Cut Method.
IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):3034-3047. doi: 10.1109/TPAMI.2018.2869744. Epub 2018 Sep 12.
10
Direct visualization of fiber information by coherence.相干直接可视化纤维信息。
Int J Comput Assist Radiol Surg. 2010 Mar;5(2):125-31. doi: 10.1007/s11548-009-0302-5. Epub 2009 Apr 15.

引用本文的文献

1
Diffusion MRI with Machine Learning.结合机器学习的扩散磁共振成像
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00353. Epub 2024 Nov 12.
2
A systematic review of automated methods to perform white matter tract segmentation.对白质束分割自动化方法的系统综述。
Front Neurosci. 2024 Mar 19;18:1376570. doi: 10.3389/fnins.2024.1376570. eCollection 2024.
5
A Computational Geometry Approach for Modeling Neuronal Fiber Pathways.一种用于模拟神经元纤维通路的计算几何方法。
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12908:175-185. doi: 10.1007/978-3-030-87237-3_17. Epub 2021 Sep 21.
7
Functional clustering of whole brain white matter fibers.全脑白质纤维的功能聚类
J Neurosci Methods. 2020 Apr 1;335:108626. doi: 10.1016/j.jneumeth.2020.108626. Epub 2020 Feb 4.

本文引用的文献

4
Processing and visualization for diffusion tensor MRI.扩散张量磁共振成像的处理与可视化
Med Image Anal. 2002 Jun;6(2):93-108. doi: 10.1016/s1361-8415(02)00053-1.
5
In vivo fiber tractography using DT-MRI data.使用扩散张量磁共振成像(DT-MRI)数据进行活体纤维束成像。
Magn Reson Med. 2000 Oct;44(4):625-32. doi: 10.1002/1522-2594(200010)44:4<625::aid-mrm17>3.0.co;2-o.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验