Suppr超能文献

基于稀疏最近点变换的束流追踪处理。

Tractography Processing with the Sparse Closest Point Transform.

机构信息

Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.

Department of Computer Science, Brown University, Providence, RI, USA.

出版信息

Neuroinformatics. 2021 Apr;19(2):367-378. doi: 10.1007/s12021-020-09488-2.

Abstract

We propose a novel approach for processing diffusion MRI tractography datasets using the sparse closest point transform (SCPT). Tractography enables the 3D geometry of white matter pathways to be reconstructed; however, algorithms for processing them are often highly customized, and thus, do not leverage the existing wealth of machine learning (ML) algorithms. We investigated a vector-space tractography representation that aims to bridge this gap by using the SCPT, which consists of two steps: first, extracting sparse and representative landmarks from a tractography dataset, and second transforming curves relative to these landmarks with a closest point transform. We explore its use in three typical tasks: fiber bundle clustering, simplification, and selection across a population. The clustering algorithm groups fibers from single whole-brain datasets using a non-parametric k-means clustering algorithm, with performance compared with three alternative methods and across four datasets. The simplification algorithm removes redundant curves to improve interactive visualization, with performance gauged relative to random subsampling. The selection algorithm extracts bundles across a population using a one-class Gaussian classifier derived from an atlas prototype, with performance gauged by scan-rescan reliability and sensitivity to normal aging, as compared to manual mask-based selection. Our results demonstrate how the SCPT enables the novel application of existing vector-space ML algorithms to create effective and efficient tools for tractography processing. Our experimental data is available online, and our software implementation is available in the Quantitative Imaging Toolkit.

摘要

我们提出了一种使用稀疏最近点变换(SCPT)处理扩散磁共振成像轨迹数据集的新方法。轨迹技术能够重建白质通路的 3D 几何形状;然而,用于处理它们的算法通常是高度定制的,因此,无法利用现有的大量机器学习(ML)算法。我们研究了一种向量空间轨迹表示方法,旨在通过使用 SCPT 来弥合这一差距,该方法由两个步骤组成:首先,从轨迹数据集提取稀疏和有代表性的地标,其次,使用最近点变换相对于这些地标变换曲线。我们探索了它在三个典型任务中的应用:纤维束聚类、简化和在人群中选择。聚类算法使用非参数 k-均值聚类算法对来自单个全脑数据集的纤维进行分组,与三种替代方法和四个数据集进行了性能比较。简化算法通过随机子采样来去除冗余曲线以改善交互可视化,以相对于随机子采样的性能进行衡量。选择算法使用从图谱原型导出的单类高斯分类器在人群中提取束,与手动基于掩模的选择相比,通过扫描-扫描可靠性和对正常老化的敏感性来衡量性能。我们的结果表明,SCPT 如何能够将现有的向量空间 ML 算法应用于创建有效的和高效的轨迹处理工具。我们的实验数据可在线获取,我们的软件实现可在定量成像工具包中获得。

相似文献

5
Fast Streamline Search: An Exact Technique for Diffusion MRI Tractography.快速流线搜索:扩散磁共振束示踪的精确技术。
Neuroinformatics. 2022 Oct;20(4):1093-1104. doi: 10.1007/s12021-022-09590-7. Epub 2022 Jun 18.
6
10
Fiber-distance-based unsupervised clustering of MR tractography data.基于纤维距离的磁共振束追踪数据无监督聚类。
J Neurosci Methods. 2019 Sep 1;325:108361. doi: 10.1016/j.jneumeth.2019.108361. Epub 2019 Jul 20.

本文引用的文献

2
4
Fiber clustering versus the parcellation-based connectome.纤维聚类与基于分割的连接组学。
Neuroimage. 2013 Oct 15;80:283-9. doi: 10.1016/j.neuroimage.2013.04.066. Epub 2013 Apr 28.
5
QuickBundles, a Method for Tractography Simplification.快速捆绑:一种简化束追踪的方法。
Front Neurosci. 2012 Dec 11;6:175. doi: 10.3389/fnins.2012.00175. eCollection 2012.
7
Fiber modeling and clustering based on neuroanatomical features.基于神经解剖学特征的纤维建模与聚类
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):17-24. doi: 10.1007/978-3-642-23629-7_3.
8
FSL.束流输送系统。
Neuroimage. 2012 Aug 15;62(2):782-90. doi: 10.1016/j.neuroimage.2011.09.015. Epub 2011 Sep 16.
10
Clustering Fiber Traces Using Normalized Cuts.使用归一化割算法对纤维轨迹进行聚类
Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375. doi: 10.1007/b100265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验