Suppr超能文献

磁共振激励激光散斑成像。

Magnetomotive laser speckle imaging.

机构信息

Kyungpook National University, Electrical and Computer Engineering, Daegu, South Korea.

出版信息

J Biomed Opt. 2010 Jan-Feb;15(1):011110. doi: 10.1117/1.3285612.

Abstract

Laser speckle imaging (LSI) involves analysis of reflectance images collected during coherent optical excitation of an object to compute wide-field maps of tissue blood flow. An intrinsic limitation of LSI for resolving microvascular architecture is that its signal depends on relative motion of interrogated red blood cells. Hence, with LSI, small-diameter arterioles, venules, and capillaries are difficult to resolve due to the slow flow speeds associated with such vasculature. Furthermore, LSI characterization of subsurface blood flow is subject to blurring due to scattering, further limiting the ability of LSI to resolve or quantify blood flow in small vessels. Here, we show that magnetic activation of superparamagnetic iron oxide (SPIO) nanoparticles modulate the speckle flow index (SFI) values estimated from speckle contrast analysis of collected images. With application of an ac magnetic field to a solution of stagnant SPIO particles, an apparent increase in SFI is induced. Furthermore, with application of a focused dc magnetic field, a focal decrease in SFI values is induced. Magnetomotive LSI may enable wide-field mapping of suspicious tissue regions, enabling subsequent high-resolution optical interrogation of these regions. Similarly, subsequent photoactivation of intravascular SPIO nanoparticles could then be performed to induce selective photothermal destruction of unwanted vasculature.

摘要

激光散斑成像(LSI)涉及在相干光激发物体时收集的反射图像的分析,以计算组织血流的宽场图。LSI 用于解析微血管结构的固有限制是,其信号取决于被询问的红细胞的相对运动。因此,由于与这种脉管系统相关的流速较慢,LSI 难以解析小直径的动脉、小静脉和毛细血管。此外,由于散射,LSI 对亚表面血流的特征描述会模糊,进一步限制了 LSI 解析或量化小血管中血流的能力。在这里,我们表明超顺磁氧化铁(SPIO)纳米粒子的磁激活调制了从收集的图像的散斑对比度分析估计的散斑流指数(SFI)值。应用交流磁场到静止 SPIO 粒子的溶液中,会引起 SFI 的明显增加。此外,应用聚焦直流磁场会引起 SFI 值的焦点降低。磁激励 LSI 可以实现可疑组织区域的宽场映射,从而能够对这些区域进行随后的高分辨率光学询问。同样,随后可以对血管内 SPIO 纳米粒子进行光激活,以诱导对不需要的脉管系统的选择性光热破坏。

相似文献

1
Magnetomotive laser speckle imaging.
J Biomed Opt. 2010 Jan-Feb;15(1):011110. doi: 10.1117/1.3285612.
2
Methods to enhance laser speckle imaging of high-flow and low-flow vasculature.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4073-6. doi: 10.1109/IEMBS.2009.5333204.
3
Correcting for motion artifact in handheld laser speckle images.
J Biomed Opt. 2018 Mar;23(3):1-7. doi: 10.1117/1.JBO.23.3.036006.
4
Laser speckle imaging based on photothermally driven convection.
J Biomed Opt. 2016 Feb;21(2):26011. doi: 10.1117/1.JBO.21.2.026011.
5
Photothermal laser speckle imaging.
Opt Lett. 2014 Sep 1;39(17):5006-9. doi: 10.1364/OL.39.005006.
6
Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.
Microvasc Res. 2015 Mar;98:54-61. doi: 10.1016/j.mvr.2014.12.003. Epub 2015 Jan 7.
9
Application of optical flow algorithms to laser speckle imaging.
Microvasc Res. 2019 Mar;122:52-59. doi: 10.1016/j.mvr.2018.11.001. Epub 2018 Nov 8.
10
Imaging microvascular flow characteristics using laser speckle contrast imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1978-81. doi: 10.1109/IEMBS.2010.5627543.

引用本文的文献

1
Lightweight denoising speckle contrast image GAN for real-time denoising of laser speckle imaging of blood flow.
Biomed Opt Express. 2025 Feb 20;16(3):1118-1142. doi: 10.1364/BOE.545628. eCollection 2025 Mar 1.
2
Magnetic particles in motion: magneto-motive imaging and sensing.
Theranostics. 2022 Jan 24;12(4):1783-1799. doi: 10.7150/thno.54056. eCollection 2022.
3
Visualization of deep blood vessels using principal component analysis based laser speckle imaging.
Biomed Opt Express. 2019 Mar 25;10(4):2020-2031. doi: 10.1364/BOE.10.002020. eCollection 2019 Apr 1.
4
Improved speckle contrast optical coherence tomography angiography.
Am J Transl Res. 2018 Oct 15;10(10):3025-3035. eCollection 2018.
6
Photothermal laser speckle imaging.
Opt Lett. 2014 Sep 1;39(17):5006-9. doi: 10.1364/OL.39.005006.
7
Magnetomotive molecular nanoprobes.
Curr Med Chem. 2011;18(14):2103-14. doi: 10.2174/092986711795656252.

本文引用的文献

1
Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA).
J Biomed Opt. 1999 Jan;4(1):164-75. doi: 10.1117/1.429903.
2
Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound.
Nanotechnology. 2006 Aug 28;17(16):4183-90. doi: 10.1088/0957-4484/17/16/031. Epub 2006 Aug 1.
3
Imaging nanoparticle flow using magneto-motive optical Doppler tomography.
Nanotechnology. 2007 Jan 24;18(3):035504. doi: 10.1088/0957-4484/18/3/035504. Epub 2007 Jan 3.
5
Magnetomotive contrast for in vivo optical coherence tomography.
Opt Express. 2005 Aug 22;13(17):6597-614. doi: 10.1364/opex.13.006597.
7
Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging.
Opt Lett. 2008 Dec 15;33(24):2886-8. doi: 10.1364/ol.33.002886.
8
Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis.
FASEB J. 2008 Dec;22(12):4239-47. doi: 10.1096/fj.07-105544. Epub 2008 Aug 25.
9
Can laser speckle flowmetry be made a quantitative tool?
J Opt Soc Am A Opt Image Sci Vis. 2008 Aug;25(8):2088-94. doi: 10.1364/josaa.25.002088.
10
Photothermal response of superparamagnetic iron oxide nanoparticles.
Lasers Surg Med. 2008 Aug;40(6):415-21. doi: 10.1002/lsm.20650.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验