Suppr超能文献

多元纵向数据分析综述。

A review of multivariate longitudinal data analysis.

机构信息

Indian Institute of Public Health, C/O Indian Institute of Health and Family Welfare, Vengal Rao Nagar, Hyderabad, India.

出版信息

Stat Methods Med Res. 2011 Aug;20(4):299-330. doi: 10.1177/0962280209340191. Epub 2010 Mar 8.

Abstract

Repeated observation of multiple outcomes is common in biomedical and public health research. Such experiments result in multivariate longitudinal data, which are unique in the sense that they allow the researcher to study the joint evolution of these outcomes over time. Special methods are required to analyse such data because repeated observations on any given response are likely to be correlated over time while multiple responses measured at a given time point will also be correlated. We review three approaches for analysing such data in the light of the associated theory, applications and software. The first method consists of the application of univariate longitudinal tools to a single summary outcome. The second method aims at estimating regression coefficients without explicitly modelling the underlying covariance structure of the data. The third method combines all the outcomes into a single joint multivariate model. We also introduce a multivariate longitudinal dataset and use it to illustrate some of the techniques discussed in the article.

摘要

在生物医学和公共卫生研究中,多次观察多个结果的情况很常见。此类实验会产生多元纵向数据,这些数据具有独特性,因为它们可以让研究人员研究这些结果随时间的共同演变。由于给定响应的重复观测随着时间的推移很可能相关,而在给定时间点测量的多个响应也将相关,因此需要特殊的方法来分析此类数据。我们根据相关理论、应用和软件,回顾了三种分析此类数据的方法。第一种方法是将单变量纵向工具应用于单个汇总结果。第二种方法旨在估计回归系数,而不明确建模数据的基础协方差结构。第三种方法将所有结果组合到一个单一的联合多变量模型中。我们还介绍了一个多元纵向数据集,并使用它来说明文章中讨论的一些技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验