Suppr超能文献

孤束核内来自鼓索神经和舌咽神经传入的神经元的突触特征。

Synaptic characteristics of rostral nucleus of the solitary tract neurons with input from the chorda tympani and glossopharyngeal nerves.

机构信息

Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA.

出版信息

Brain Res. 2010 Apr 30;1328:71-8. doi: 10.1016/j.brainres.2010.03.003. Epub 2010 Mar 6.

Abstract

Chorda tympani (CT) and glossopharyngeal (IXth) nerves relay taste information from anterior and posterior tongue to brainstem where they synapse with second order neurons in the rostral nucleus of solitary tract (rNST). rNST neurons monosynaptically connected to afferent gustatory input were identified both by anatomical labeling and synaptic latency measures. Anterograde tracing was used to label the CT and IXth terminal fields, and neurons surrounded by fluorescent neural profiles visualized with differential interference contrast (DIC) optics in horizontal brainstem slices. Anatomically identified neurons were patch-clamped and excitatory postsynaptic currents (EPSCs) evoked by electrically stimulating the solitary tract (ST) under GABA(A) receptor blockade. Monosynaptic connections were confirmed by measures of the standard deviation of synaptic latency (jitter). rNST neurons responded to ST stimulation with either all-or-none or graded amplitude EPSCs. Most (70%) of the rNST neurons with CT input and 30% with IX input responded with all-or-none EPSCs. The remainder of the neurons with CT and IX input responded with increasing EPSC amplitudes to greater intensity stimulus shocks. EPSCs evoked in rNST neurons by increasing shock frequency to both CT and IXth nerves resulted in reduced amplitude EPSCs characteristic of frequency-dependent synaptic depression. Our results suggest that the second order rNST neurons respond to afferent input with different patterns of EPSCs that potentially influence transmission of gustatory information. Frequency-dependent synaptic depression would act as a low pass filter important in the initial processing of gustatory derived sensory messages.

摘要

鼓索神经(CT)和舌咽神经(IXth)将来自舌前和舌后的味觉信息传递到脑干,在那里它们与孤束核的第二级神经元(rNST)突触。通过解剖学标记和突触潜伏期测量,鉴定出与传入味觉输入单突触连接的 rNST 神经元。顺行追踪用于标记 CT 和 IXth 末端场,并用微分干涉对比(DIC)光学在水平脑干切片中可视化被荧光神经轮廓包围的神经元。用孤束(ST)电刺激在 GABA(A)受体阻断下,对解剖学鉴定的神经元进行膜片钳记录,并测量兴奋性突触后电流(EPSC)。通过测量突触潜伏期(抖动)的标准偏差来确认单突触连接。rNST 神经元对 ST 刺激的反应要么是全或无,要么是分级幅度 EPSC。具有 CT 输入的 rNST 神经元中的大多数(70%)和具有 IX 输入的 30%神经元表现出全或无 EPSC。具有 CT 和 IX 输入的其余神经元对更强的刺激脉冲表现出递增的 EPSC 幅度。增加 CT 和 IX 神经的刺激频率引起 rNST 神经元中的 EPSC,导致幅度减小,这是频率依赖性突触抑制的特征。我们的结果表明,第二级 rNST 神经元对传入输入的反应具有不同的 EPSC 模式,这可能影响味觉信息的传递。频率依赖性突触抑制将作为重要的低通滤波器,在味觉衍生感觉信息的初始处理中发挥作用。

相似文献

5
Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract.
Brain Struct Funct. 2016 Mar;221(2):1125-37. doi: 10.1007/s00429-014-0959-6. Epub 2014 Dec 14.
8
Oxytocin enhances cranial visceral afferent synaptic transmission to the solitary tract nucleus.
J Neurosci. 2008 Nov 5;28(45):11731-40. doi: 10.1523/JNEUROSCI.3419-08.2008.

引用本文的文献

1
Regulation of Rostral Nucleus of the Solitary Tract Responses to Afferent Input by A-type K+ Current.
Neuroscience. 2022 Jul 15;495:115-125. doi: 10.1016/j.neuroscience.2022.05.036. Epub 2022 Jun 2.
2
A computational analysis of signal fidelity in the rostral nucleus of the solitary tract.
J Neurophysiol. 2018 Mar 1;119(3):771-785. doi: 10.1152/jn.00624.2017. Epub 2017 Nov 1.
3
Inhibitory modulation of optogenetically identified neuron subtypes in the rostral solitary nucleus.
J Neurophysiol. 2016 Aug 1;116(2):391-403. doi: 10.1152/jn.00168.2016. Epub 2016 May 4.
4
Physiological and anatomical properties of intramedullary projection neurons in rat rostral nucleus of the solitary tract.
J Neurophysiol. 2013 Sep;110(5):1130-43. doi: 10.1152/jn.00167.2013. Epub 2013 Jun 5.
6
Neural coding of taste by simultaneously recorded cells in the nucleus of the solitary tract of the rat.
J Neurophysiol. 2012 Dec;108(12):3301-12. doi: 10.1152/jn.00566.2012. Epub 2012 Sep 26.
7
Characteristics of calcium currents in rat geniculate ganglion neurons.
J Neurophysiol. 2011 Jan;105(1):224-34. doi: 10.1152/jn.00636.2010. Epub 2010 Nov 10.

本文引用的文献

1
The Gustatory Neural Response Function.
J Gen Physiol. 1965 Nov 1;49(2):247-63. doi: 10.1085/jgp.49.2.247.
2
Linking peripheral taste processes to behavior.
Curr Opin Neurobiol. 2009 Aug;19(4):370-7. doi: 10.1016/j.conb.2009.07.014. Epub 2009 Aug 10.
4
Two types of inhibitory influences target different groups of taste-responsive cells in the nucleus of the solitary tract of the rat.
Brain Res. 2009 Jun 12;1275:24-32. doi: 10.1016/j.brainres.2009.03.069. Epub 2009 Apr 14.
5
Experimentally cross-wired lingual taste nerves can restore normal unconditioned gaping behavior in response to quinine stimulation.
Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R738-47. doi: 10.1152/ajpregu.00668.2007. Epub 2008 Jan 9.
8
Effects of 5-hydroxytryptamine and substance P on neurons of the inferior salivatory nucleus.
J Neurophysiol. 2007 Apr;97(4):2605-11. doi: 10.1152/jn.00859.2006. Epub 2007 Jan 31.
10
Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding.
Neuron. 2006 Feb 2;49(3):357-63. doi: 10.1016/j.neuron.2005.12.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验