Castoe T A, Gu W, de Koning A P J, Daza J M, Jiang Z J, Parkinson C L, Pollock D D
Consortium for Comparative Genomics, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
Cytogenet Genome Res. 2009;127(2-4):112-27. doi: 10.1159/000295342. Epub 2010 Mar 8.
Gradients of nucleotide bias and substitution rates occur in vertebrate mitochondrial genomes due to the asymmetric nature of the replication process. The evolution of these gradients has previously been studied in detail in primates, but not in other vertebrate groups. From the primate study, the strengths of these gradients are known to evolve in ways that can substantially alter the substitution process, but it is unclear how rapidly they evolve over evolutionary time or how different they may be in different lineages or groups of vertebrates. Given the importance of mitochondrial genomes in phylogenetics and molecular evolutionary research, a better understanding of how asymmetric mitochondrial substitution gradients evolve would contribute key insights into how this gradient evolution may mislead evolutionary inferences, and how it may also be incorporated into new evolutionary models. Most snake mitochondrial genomes have an additional interesting feature, 2 nearly identical control regions, which vary among different species in the extent that they are used as origins of replication. Given the expanded sampling of complete snake genomes currently available, together with 2 additional snakes sequenced in this study, we reexamined gradient strength and CR usage in alethinophidian snakes as well as several lizards that possess dual CRs. Our results suggest that nucleotide substitution gradients (and corresponding nucleotide bias) and CR usage is highly labile over the approximately 200 m.y. of squamate evolution, and demonstrates greater overall variability than previously shown in primates. The evidence for the existence of such gradients, and their ability to evolve rapidly and converge among unrelated species suggests that gradient dynamics could easily mislead phylogenetic and molecular evolutionary inferences, and argues strongly that these dynamics should be incorporated into phylogenetic models.
由于复制过程的不对称性,脊椎动物线粒体基因组中会出现核苷酸偏好和替换率的梯度。此前已在灵长类动物中详细研究了这些梯度的进化,但尚未在其他脊椎动物群体中进行研究。从灵长类动物的研究中可知,这些梯度的强度会以能显著改变替换过程的方式进化,但尚不清楚它们在进化时间上的进化速度有多快,或者在不同的脊椎动物谱系或群体中会有多大差异。鉴于线粒体基因组在系统发育学和分子进化研究中的重要性,更好地理解不对称线粒体替换梯度是如何进化的,将有助于深入了解这种梯度进化可能如何误导进化推断,以及它如何也能被纳入新的进化模型。大多数蛇的线粒体基因组还有一个有趣的特征,即两个几乎相同的控制区,它们在用作复制起点的程度上因不同物种而异。鉴于目前可获得的完整蛇基因组样本有所增加,再加上本研究中测序的另外两条蛇,我们重新审视了真蛇类蛇以及几种具有双控制区的蜥蜴中的梯度强度和控制区使用情况。我们的结果表明,在有鳞目动物大约2亿年的进化过程中,核苷酸替换梯度(以及相应的核苷酸偏好)和控制区使用情况高度不稳定,并且显示出比之前在灵长类动物中所显示的更大的总体变异性。这种梯度存在的证据,以及它们快速进化并在不相关物种中趋同的能力表明,梯度动态很容易误导系统发育和分子进化推断,并有力地表明这些动态应该被纳入系统发育模型。