表型组学:拓展临床评估在基因组研究中的作用

Phenomics: expanding the role of clinical evaluation in genomic studies.

作者信息

Lanktree Matthew B, Hassell Reina G, Lahiry Piya, Hegele Robert A

机构信息

Department of Medicine, University of Western Ontario, London, Ontario, Canada.

出版信息

J Investig Med. 2010 Jun;58(5):700-6. doi: 10.231/JIM.0b013e3181d844f7.

Abstract

With advances in high-throughput genotyping technologies, the rate-limiting step of large-scale genetic investigations has become the collection of sensitive and specific phenotype information in large samples of study participants. Clinicians play a pivotal role for successful genetic studies because sound clinical acumen can substantially increase study power by reducing measurement error and improving diagnostic precision for translational research. Phenomics is the systematic measurement and analysis of qualitative and quantitative traits, including clinical, biochemical, and imaging methods, for the refinement and characterization of a phenotype. Phenomics requires deep phenotyping, the collection of a wide breadth of phenotypes with fine resolution, and phenomic analysis, composed of constructing heat maps, cluster analysis, text mining, and pathway analysis. In this article, we review the components of phenomics and provide examples of their application to genomic studies, specifically for implicating novel disease processes, reducing sample heterogeneity, hypothesis generation, integration of multiple types of data, and as an extension of Mendelian randomization studies.

摘要

随着高通量基因分型技术的进步,大规模基因研究的限速步骤已成为在大量研究参与者样本中收集敏感且特异的表型信息。临床医生在成功的基因研究中起着关键作用,因为良好的临床敏锐度可通过减少测量误差和提高转化研究的诊断精度来显著增强研究效能。表型组学是对定性和定量性状进行系统测量和分析,包括临床、生化和成像方法,以完善和表征表型。表型组学需要深度表型分析,即收集具有高分辨率的广泛表型,以及表型组分析,包括构建热图、聚类分析、文本挖掘和通路分析。在本文中,我们回顾了表型组学的组成部分,并提供了其在基因组研究中的应用实例,特别是用于揭示新的疾病过程、减少样本异质性、生成假设、整合多种类型的数据以及作为孟德尔随机化研究的扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索