Suppr超能文献

家畜高通量表型分析与大数据分析的发展与利用愿景

A Vision for Development and Utilization of High-Throughput Phenotyping and Big Data Analytics in Livestock.

作者信息

Koltes James E, Cole John B, Clemmens Roxanne, Dilger Ryan N, Kramer Luke M, Lunney Joan K, McCue Molly E, McKay Stephanie D, Mateescu Raluca G, Murdoch Brenda M, Reuter Ryan, Rexroad Caird E, Rosa Guilherme J M, Serão Nick V L, White Stephen N, Woodward-Greene M Jennifer, Worku Millie, Zhang Hongwei, Reecy James M

机构信息

Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States.

Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, United States.

出版信息

Front Genet. 2019 Dec 17;10:1197. doi: 10.3389/fgene.2019.01197. eCollection 2019.

Abstract

Automated high-throughput phenotyping with sensors, imaging, and other on-farm technologies has resulted in a flood of data that are largely under-utilized. Drastic cost reductions in sequencing and other omics technology have also facilitated the ability for deep phenotyping of livestock at the molecular level. These advances have brought the animal sciences to a cross-roads in data science where increased training is needed to manage, record, and analyze data to generate knowledge and advances in Agriscience related disciplines. This paper describes the opportunities and challenges in using high-throughput phenotyping, "big data," analytics, and related technologies in the livestock industry based on discussions at the Livestock High-Throughput Phenotyping and Big Data Analytics meeting, held in November 2017 (see: https://www.animalgenome.org/bioinfo/community/workshops/2017/). Critical needs for investments in infrastructure for people (e.g., "big data" training), data (e.g., data transfer, management, and analytics), and technology (e.g., development of low cost sensors) were defined by this group. Though some subgroups of animal science have extensive experience in predictive modeling, cross-training in computer science, statistics, and related disciplines are needed to use big data for diverse applications in the field. Extensive opportunities exist for public and private entities to harness big data to develop valuable research knowledge and products to the benefit of society under the increased demands for food in a rapidly growing population.

摘要

利用传感器、成像技术及其他农场技术进行的自动化高通量表型分析产生了大量基本上未得到充分利用的数据。测序及其他组学技术成本的大幅降低也推动了在分子水平对家畜进行深度表型分析的能力。这些进展使动物科学处于数据科学的十字路口,需要加强培训以管理、记录和分析数据,从而在农业科学相关学科中产生知识并取得进展。本文基于2017年11月举行的家畜高通量表型分析与大数据分析会议(见:https://www.animalgenome.org/bioinfo/community/workshops/2017/)上的讨论,描述了在家畜行业中使用高通量表型分析、“大数据”、分析及相关技术的机遇与挑战。该小组确定了在人员基础设施(如“大数据”培训)、数据(如数据传输、管理和分析)以及技术(如低成本传感器的开发)方面进行投资的关键需求。尽管动物科学的一些子领域在预测建模方面有丰富经验,但仍需要在计算机科学、统计学及相关学科方面进行交叉培训,以便在该领域将大数据用于各种应用。在人口快速增长导致对食物需求增加的情况下,公共和私营实体利用大数据开发有价值的研究知识和产品以造福社会存在广泛机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b14/6934059/6cfc2cb8bc5a/fgene-10-01197-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验