Suppr超能文献

基于可编程微阀的微流控阵列用于个体秀丽隐杆线虫神经毒素诱导反应的特征分析。

A programmable microvalve-based microfluidic array for characterization of neurotoxin-induced responses of individual C. elegans.

机构信息

Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, People's Republic of China.

出版信息

Biomicrofluidics. 2009 Dec 23;3(4):44114. doi: 10.1063/1.3274313.

Abstract

The soil dwelling nematode Caenorhabditis elegans (C. elegans) is an excellent model organism for the study of numerous disease including neurodegenerative disease. In this study, a programmable microvalve-based microfluidic array for real-time and long-term monitoring of the neurotoxin-induced responses of the individual C. elegans was developed. The device consisted of a flow layer and a control layer, which were used for worm manipulation. By activating the programmable microvalves in the control layer, mutiple worms could be individually captured and intermittently immobilized in parallel channels. Thus the mobility behavior, together with the corresponding dopaminergic neuron features of the worms in response to neurotoxin, could be investigated simultaneously. It was found that the neurotoxin MPP+ enabled to induce mobility defects and dopaminergic neurons loss in worms. The established system is easy and fast to operate, which offers not only the controllable microenvironment for analyzing the individual worms in parallel, monitoring the same worm over time, but also the capability to characterize the mobility behavior and neuron features in response to stimuli simultaneously. In addition, the device enabled to sustain the worm culture over most of their adult lifespan without any harm to worm, providing a potential platform for lifespan and aging research.

摘要

土壤栖居线虫秀丽隐杆线虫(C. elegans)是研究多种疾病(包括神经退行性疾病)的优秀模式生物。在这项研究中,开发了一种基于可编程微阀的微流控阵列,用于实时和长期监测单个秀丽隐杆线虫受到神经毒素的反应。该设备由一个流动层和一个控制层组成,用于操纵线虫。通过激活控制层中的可编程微阀,可以单独捕获多个线虫并在并行通道中间歇性地固定它们。因此,可以同时研究线虫对线虫的运动行为以及相应的多巴胺能神经元特征的反应。结果发现,神经毒素 MPP+能够诱导线虫的运动缺陷和多巴胺能神经元丧失。所建立的系统易于操作且快速,不仅为分析平行的单个线虫提供了可控的微环境,还可以实时监测同一线虫,并且能够同时表征对线虫刺激的运动行为和神经元特征。此外,该设备能够在不伤害线虫的情况下维持线虫的大部分成年寿命,为寿命和衰老研究提供了一个潜在的平台。

相似文献

2
Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans.
Lab Chip. 2010 Nov 7;10(21):2855-63. doi: 10.1039/c0lc00256a. Epub 2010 Sep 30.
3
Multiparameter evaluation of the longevity in C. elegans under stress using an integrated microfluidic device.
Biomed Microdevices. 2012 Aug;14(4):721-8. doi: 10.1007/s10544-012-9652-9.
4
Parallel-Channel Electrotaxis and Neuron Screening of .
Micromachines (Basel). 2020 Aug 4;11(8):756. doi: 10.3390/mi11080756.
5
Probing the anti-aging role of polydatin in Caenorhabditis elegans on a chip.
Integr Biol (Camb). 2014 Jan;6(1):35-43. doi: 10.1039/c3ib40191j.
6
Microfluidic chamber arrays for whole-organism behavior-based chemical screening.
Lab Chip. 2011 Nov 7;11(21):3689-3697. doi: 10.1039/c1lc20400a. Epub 2011 Sep 20.
7
A microfluidic diode for sorting and immobilization of Caenorhabditis elegans.
Biomed Microdevices. 2017 Jun;19(2):38. doi: 10.1007/s10544-017-0175-2.
8
An Automated Microfluidic System for Morphological Measurement and Size-Based Sorting of C. Elegans.
IEEE Trans Nanobioscience. 2019 Jul;18(3):373-380. doi: 10.1109/TNB.2019.2904009. Epub 2019 Mar 8.

引用本文的文献

1
Microfluidic-Assisted Sorting: Current Status and Future Prospects.
Cyborg Bionic Syst. 2023 Apr 14;4:0011. doi: 10.34133/cbsystems.0011. eCollection 2023.
2
Microfluidic approaches for research.
Anim Cells Syst (Seoul). 2020 Nov 3;24(6):311-320. doi: 10.1080/19768354.2020.1837951.
4
Parallel-Channel Electrotaxis and Neuron Screening of .
Micromachines (Basel). 2020 Aug 4;11(8):756. doi: 10.3390/mi11080756.
5
Microfluidic Technologies for High Throughput Screening Through Sorting and On-Chip Culture of .
Molecules. 2019 Nov 25;24(23):4292. doi: 10.3390/molecules24234292.
6
Microfluidic Approaches for Manipulating, Imaging, and Screening C. elegans.
Micromachines (Basel). 2016 Jul 19;7(7):123. doi: 10.3390/mi7070123.
7
High-throughput screening in the C. elegans nervous system.
Mol Cell Neurosci. 2017 Apr;80:192-197. doi: 10.1016/j.mcn.2016.06.001. Epub 2016 Jun 3.
10
A perspective on optical developments in microfluidic platforms for Caenorhabditis elegans research.
Biomicrofluidics. 2014 Feb 13;8(1):011301. doi: 10.1063/1.4865167. eCollection 2014 Jan.

本文引用的文献

1
CO2 and compressive immobilization of C. elegans on-chip.
Lab Chip. 2009 Jan 7;9(1):151-7. doi: 10.1039/b807345g. Epub 2008 Oct 21.
2
Computer-enhanced high-throughput genetic screens of C. elegans in a microfluidic system.
Lab Chip. 2009 Jan 7;9(1):38-40. doi: 10.1039/b813730g. Epub 2008 Oct 27.
3
Droplet-based microfluidic system for individual Caenorhabditis elegans assay.
Lab Chip. 2008 Sep;8(9):1432-5. doi: 10.1039/b808753a. Epub 2008 Jul 7.
4
Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans.
Nat Methods. 2008 Jul;5(7):637-43. doi: 10.1038/nmeth.1227. Epub 2008 Jun 22.
6
Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies.
Nat Methods. 2008 Jun;5(6):531-3. doi: 10.1038/nmeth.1203. Epub 2008 Apr 13.
7
A microfabricated array of clamps for immobilizing and imaging C. elegans.
Lab Chip. 2007 Nov;7(11):1515-23. doi: 10.1039/b707861g. Epub 2007 Aug 16.
8
Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution.
Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13891-5. doi: 10.1073/pnas.0706513104. Epub 2007 Aug 21.
9
Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans.
Nat Methods. 2007 Sep;4(9):727-31. doi: 10.1038/nmeth1075. Epub 2007 Aug 19.
10
Maze exploration and learning in C. elegans.
Lab Chip. 2007 Feb;7(2):186-92. doi: 10.1039/b613414a. Epub 2006 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验