Suppr超能文献

电致物理应激诱导的蛋白质修饰和细胞反应的系统分析。

Systems analysis of protein modification and cellular responses induced by electrophile stress.

机构信息

A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.

出版信息

Acc Chem Res. 2010 May 18;43(5):673-83. doi: 10.1021/ar900286y.

Abstract

Biological electrophiles result from oxidative metabolism of exogenous compounds or endogenous cellular constituents, and they contribute to pathophysiologies such as toxicity and carcinogenicity. The chemical toxicology of electrophiles is dominated by covalent addition to intracellular nucleophiles. Reaction with DNA leads to the production of adducts that block replication or induce mutations. The chemistry and biology of electrophile-DNA reactions have been extensively studied, providing in many cases a detailed understanding of the relation between adduct structure and mutational consequences. By contrast, the linkage between protein modification and cellular response is poorly understood. In this Account, we describe our efforts to define the chemistry of protein modification and its biological consequences using lipid-derived alpha,beta-unsaturated aldehydes as model electrophiles. In our global approach, two large data sets are analyzed: one represents the identity of proteins modified over a wide range of electrophile concentrations, and the second comprises changes in gene expression observed under similar conditions. Informatics tools show theoretical connections based primarily on transcription factors hypothetically shared between the two data sets, downstream of adducted proteins and upstream of affected genes. This method highlights potential electrophile-sensitive signaling pathways and transcriptional processes for further evaluation. Peroxidation of cellular phospholipids generates a complex mixture of both membrane-bound and diffusible electrophiles. The latter include reactive species such as malondialdehyde, 4-oxononenal, and 4-hydroxynonenal (HNE). Enriching HNE-adducted proteins for proteomic analysis was a technical challenge, solved with click chemistry that generated biotin-tagged protein adducts. For this purpose, HNE analogues bearing terminal azide or alkyne functionalities were synthesized. Cellular lysates were first exposed to a single type of HNE analogue (azido- or alkynyl-HNE), and then click reactions were performed against the cognate alkynyl- and azido-biotin derivative. The resulting biotin-labeled proteins were captured and enriched over a streptavidin matrix for subsequent mass spectrometric analysis. We thereby identified a multitude of HNE targets. Simultaneous microarray analysis of changes in gene expression triggered by HNE also produced an abundance of data. Functional analysis of both data sets generated the hypothesis that an important pathway of cellular response derives from electrophile modification of protein chaperones, resulting in the release of transcription factors that are their clients. Informatic analysis of the protein modification and microarray data sets identified several transcription factors as potential mediators of the cellular response to HNE-adducted proteins. Among these, heat shock factor 1 (HSF1) was confirmed as a sensitive and robust effector of HNE-induced changes in gene expression. Activation of HSF1 appears, in part, to be mediated by the electrophilic adduction of Hsp70 and Hsp90, which normally maintain HSF1 in an inactive cytosolic complex. The identification of HSF1 as a mediator of biological effects downstream of HSF1 has provided new opportunities for research, illustrating the potential of our systems-based approach. Accordingly, we characterized HSF1-mediated gene expression in protecting against electrophile-induced toxicity. Among the genes induced by HSF1, Bcl-2- associated athanogene 3 (BAG3) is notable for its actions in promoting cell survival through stabilization of antiapoptotic Bcl-2 proteins, appearing to have a critical role in mediating cellular protection against electrophile-induced death.

摘要

生物亲电试剂是由外源性化合物或内源性细胞成分的氧化代谢产生的,它们导致毒性和致癌性等病理生理学变化。亲电试剂的化学毒理学主要由与细胞内亲核试剂的共价加合来主导。与 DNA 反应会导致产生加合物,从而阻止复制或诱导突变。亲电试剂-DNA 反应的化学和生物学已经得到了广泛的研究,在许多情况下提供了加合物结构与突变后果之间关系的详细理解。相比之下,蛋白质修饰与细胞反应之间的联系理解得很差。在本报告中,我们描述了使用脂质衍生的α,β-不饱和醛作为模型亲电试剂来定义蛋白质修饰的化学及其生物学后果的努力。在我们的全局方法中,分析了两个大数据集:一个代表在广泛的亲电试剂浓度范围内修饰的蛋白质的身份,另一个包含在类似条件下观察到的基因表达变化。信息学工具基于转录因子的假设连接显示,这些转录因子在两个数据集之间共享,位于加合物蛋白的下游和受影响基因的上游。这种方法突出了进一步评估的潜在亲电敏感信号通路和转录过程。细胞磷脂的过氧化产生了复杂的膜结合和可扩散亲电试剂混合物。后者包括反应性物质,如丙二醛、4-氧代壬烯醛和 4-羟基壬烯醛(HNE)。为了进行蛋白质组学分析,富集 HNE 加合物的蛋白质是一项技术挑战,通过生成带有生物素标记的蛋白质加合物的点击化学解决了这个问题。为此,合成了带有末端叠氮或炔基官能团的 HNE 类似物。细胞裂解物首先暴露于单一类型的 HNE 类似物(叠氮或炔基-HNE),然后进行针对相应炔基和叠氮生物素衍生物的点击反应。所得的生物素标记的蛋白质被捕获并在链霉亲和素基质上富集,然后进行质谱分析。我们因此鉴定了多种 HNE 靶标。同时对 HNE 触发的基因表达变化进行微阵列分析也产生了大量数据。对两个数据集的功能分析生成了一个假设,即细胞反应的一个重要途径源自亲电试剂对蛋白质伴侣的修饰,导致其客户转录因子的释放。亲电试剂修饰和微阵列数据集的信息学分析确定了几个转录因子作为 HNE 加合物诱导的基因表达变化的潜在介质。其中,热休克因子 1(HSF1)被确认为 HNE 诱导的基因表达变化的敏感和稳健的效应物。HSF1 的激活部分似乎是通过 Hsp70 和 Hsp90 的亲电加合介导的,Hsp70 和 Hsp90 通常将 HSF1 保持在细胞溶质复合物中无活性状态。HSF1 作为 HSF1 下游生物学效应的介质的鉴定为研究提供了新的机会,说明了我们基于系统的方法的潜力。因此,我们在保护细胞免受亲电物诱导的毒性方面描述了 HSF1 介导的基因表达。在 HSF1 诱导的基因中,Bcl-2 相关抗凋亡基因 3(BAG3)因其通过稳定抗凋亡 Bcl-2 蛋白促进细胞存活的作用而引人注目,似乎在介导细胞对亲电物诱导的死亡的保护中具有关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fae9/2873822/ccaeb2e19316/ar-2009-00286y_0001.jpg

相似文献

1
4
Measuring electrophile stress.
Curr Protoc Toxicol. 2009;Chapter 17:Unit17.11. doi: 10.1002/0471140856.tx1711s40.
7
Protein-selective capture to analyze electrophile adduction of hsp90 by 4-hydroxynonenal.
Chem Res Toxicol. 2011 Aug 15;24(8):1275-82. doi: 10.1021/tx200157t. Epub 2011 Jul 27.
8
Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal.
Mol Cell Proteomics. 2009 Apr;8(4):670-80. doi: 10.1074/mcp.M800070-MCP200. Epub 2008 Dec 2.

引用本文的文献

2
Nuclear SUMOylation and Proteotoxic Stress Responses to Metals with Different Ligand Preferences.
Chem Res Toxicol. 2025 May 19;38(5):942-953. doi: 10.1021/acs.chemrestox.5c00040. Epub 2025 Apr 17.
3
Nitro-fatty acids modulate germination onset through S-nitrosothiol metabolism.
Plant Physiol. 2025 Feb 7;197(2). doi: 10.1093/plphys/kiaf038.
5
A platform for mapping reactive cysteines within the immunopeptidome.
Nat Commun. 2024 Nov 8;15(1):9698. doi: 10.1038/s41467-024-54139-8.
7
Multi-tiered chemical proteomic maps of tryptoline acrylamide-protein interactions in cancer cells.
Nat Chem. 2024 Oct;16(10):1592-1604. doi: 10.1038/s41557-024-01601-1. Epub 2024 Aug 13.
8
Comprehensive analysis of the aldehyde dehydrogenase gene family in L. and their response to saline-alkali stress.
Front Plant Sci. 2024 Feb 21;15:1283845. doi: 10.3389/fpls.2024.1283845. eCollection 2024.
9
Coordination of mA mRNA Methylation and Gene Transcriptome in Sugarcane Response to Drought Stress.
Plants (Basel). 2023 Oct 24;12(21):3668. doi: 10.3390/plants12213668.

本文引用的文献

1
Transduction of redox signaling by electrophile-protein reactions.
Sci Signal. 2009 Sep 29;2(90):re7. doi: 10.1126/scisignal.290re7.
2
Reversibility of covalent electrophile-protein adducts and chemical toxicity.
Chem Res Toxicol. 2008 Dec;21(12):2361-9. doi: 10.1021/tx800248x.
4
BAG3 gene silencing sensitizes leukemic cells to Bortezomib-induced apoptosis.
FEBS Lett. 2009 Jan 22;583(2):401-6. doi: 10.1016/j.febslet.2008.12.032. Epub 2008 Dec 25.
5
Mcl-1 is a potential therapeutic target in multiple types of cancer.
Cell Mol Life Sci. 2009 Apr;66(8):1326-36. doi: 10.1007/s00018-008-8637-6.
6
Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal.
Mol Cell Proteomics. 2009 Apr;8(4):670-80. doi: 10.1074/mcp.M800070-MCP200. Epub 2008 Dec 2.
7
DNA adducts with lipid peroxidation products.
J Biol Chem. 2008 Jun 6;283(23):15545-9. doi: 10.1074/jbc.R700051200. Epub 2008 Feb 19.
9
Biological properties of single chemical-DNA adducts: a twenty year perspective.
Chem Res Toxicol. 2008 Jan;21(1):232-52. doi: 10.1021/tx700292a. Epub 2007 Dec 12.
10
Protein damage by reactive electrophiles: targets and consequences.
Chem Res Toxicol. 2008 Jan;21(1):117-28. doi: 10.1021/tx700235t. Epub 2007 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验