Suppr超能文献

一种解决遗传密码适应性问题的多目标方法。

A multiobjective approach to the genetic code adaptability problem.

作者信息

de Oliveira Lariza Laura, de Oliveira Paulo S L, Tinós Renato

机构信息

Department of Computing and Mathematics, University of São Paulo, Ribeirão Preto, Brazil.

Brazilian Biosciences National Laboratory, Campinas, Brazil.

出版信息

BMC Bioinformatics. 2015 Feb 19;16:52. doi: 10.1186/s12859-015-0480-9.

Abstract

BACKGROUND

The organization of the canonical code has intrigued researches since it was first described. If we consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51×10(84) possible genetic codes. The main question related to the organization of the genetic code is why exactly the canonical code was selected among this huge number of possible genetic codes. Many researchers argue that the organization of the canonical code is a product of natural selection and that the code's robustness against mutations would support this hypothesis. In order to investigate the natural selection hypothesis, some researches employ optimization algorithms to identify regions of the genetic code space where best codes, according to a given evaluation function, can be found (engineering approach). The optimization process uses only one objective to evaluate the codes, generally based on the robustness for an amino acid property. Only one objective is also employed in the statistical approach for the comparison of the canonical code with random codes. We propose a multiobjective approach where two or more objectives are considered simultaneously to evaluate the genetic codes.

RESULTS

In order to test our hypothesis that the multiobjective approach is useful for the analysis of the genetic code adaptability, we implemented a multiobjective optimization algorithm where two objectives are simultaneously optimized. Using as objectives the robustness against mutation with the amino acids properties polar requirement (objective 1) and robustness with respect to hydropathy index or molecular volume (objective 2), we found solutions closer to the canonical genetic code in terms of robustness, when compared with the results using only one objective reported by other authors.

CONCLUSIONS

Using more objectives, more optimal solutions are obtained and, as a consequence, more information can be used to investigate the adaptability of the genetic code. The multiobjective approach is also more natural, because more than one objective was adapted during the evolutionary process of the canonical genetic code. Our results suggest that the evaluation function employed to compare genetic codes should consider simultaneously more than one objective, in contrast to what has been done in the literature.

摘要

背景

自从首次被描述以来,标准密码子的组织形式就一直吸引着研究人员。如果我们考虑所有将64种密码子映射到20种氨基酸和一个终止密码子的密码子,那么可能的遗传密码超过1.51×10(84)种。与遗传密码组织相关的主要问题是,为什么恰恰是标准密码子在这大量可能的遗传密码中被选中。许多研究人员认为,标准密码子的组织形式是自然选择的产物,并且该密码子对突变的稳健性将支持这一假设。为了研究自然选择假设,一些研究采用优化算法来识别遗传密码空间中根据给定评估函数可以找到最佳密码子的区域(工程方法)。优化过程仅使用一个目标来评估密码子,通常基于氨基酸性质的稳健性。在将标准密码子与随机密码子进行比较的统计方法中也只使用一个目标。我们提出了一种多目标方法,其中同时考虑两个或更多目标来评估遗传密码。

结果

为了检验我们的假设,即多目标方法对于分析遗传密码适应性是有用的,我们实现了一种同时优化两个目标的多目标优化算法。使用氨基酸性质极性需求的抗突变稳健性(目标1)和关于亲水性指数或分子体积的稳健性(目标2)作为目标,与其他作者仅使用一个目标所报告的结果相比,我们在稳健性方面找到了更接近标准遗传密码的解决方案。

结论

使用更多目标,可以获得更多最优解,因此可以使用更多信息来研究遗传密码的适应性。多目标方法也更自然,因为在标准遗传密码的进化过程中不止一个目标被适应。我们的结果表明,与文献中所做的相反,用于比较遗传密码的评估函数应该同时考虑不止一个目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b5/4341243/4524af6a6c6b/12859_2015_480_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验