Suppr超能文献

从祖先的环核苷酸门控途径进化而来的光转导。

The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway.

机构信息

Department of Ecology, Evolution and Marine Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.

出版信息

Proc Biol Sci. 2010 Jul 7;277(1690):1963-9. doi: 10.1098/rspb.2009.1797. Epub 2010 Mar 10.

Abstract

The evolutionary histories of complex traits are complicated because such traits are comprised of multiple integrated and interacting components, which may have different individual histories. Phylogenetic studies of complex trait evolution often do not take this into account, instead focusing only on the history of whole, integrated traits; for example, mapping eyes as simply present or absent through history. Using the biochemistry of animal vision as a model, we demonstrate how investigating the individual components of complex systems can aid in elucidating both the origins and diversification of such systems. Opsin-based phototransduction underlies all visual phenotypes in animals, using complex protein cascades that translate light information into changes in cyclic nucleotide gated (CNG) or canonical transient receptor potential (TRPC) ion-channel activity. Here we show that CNG ion channels play a role in cnidarian phototransduction. Transcripts of a CNG ion channel co-localize with opsin in specific cell types of the eyeless cnidarian Hydra magnipapillata. Further, the CNG inhibitor cis-diltiazem ablates a stereotypical photoresponse in the hydra. Our findings in the Cnidaria, the only non-bilaterian lineage to possess functional opsins, allow us to trace the history of CNG-based photosensitivity to the very origin of animal phototransduction. Our general analytical approach, based on explicit phylogenetic analysis of individual components, contrasts the deep evolutionary history of CNG-based phototransduction, today used in vertebrate vision, with the more recent assembly of TRPC-based systems that are common to protostome (e.g. fly and mollusc) vision.

摘要

复杂性状的进化历史很复杂,因为这些性状由多个相互整合和相互作用的组成部分组成,这些组成部分可能具有不同的个体历史。复杂性状进化的系统发育研究通常没有考虑到这一点,而是只关注整个综合性状的历史;例如,通过历史上简单地将眼睛映射为存在或不存在。我们以动物视觉生物化学为模型,展示了研究复杂系统的各个组成部分如何有助于阐明这些系统的起源和多样化。基于视蛋白的光转导是动物所有视觉表型的基础,利用复杂的蛋白质级联反应,将光信息转化为环核苷酸门控(CNG)或经典瞬时受体电位(TRPC)离子通道活性的变化。在这里,我们表明 CNG 离子通道在刺胞动物光转导中起作用。特定无眼刺胞动物 Hydra magnipapillata 的特定细胞类型中,CNG 离子通道的转录本与视蛋白共定位。此外,CNG 抑制剂 cis-diltiazem 可消除 Hydra 中典型的光反应。我们在刺胞动物中的发现,刺胞动物是唯一拥有功能性视蛋白的非双侧谱系,使我们能够将基于 CNG 的感光性的历史追溯到动物光转导的起源。我们基于对单个组成部分的明确系统发育分析的一般分析方法,对比了基于 CNG 的光转导的深层进化历史,该方法今天用于脊椎动物视觉,以及最近组装的基于 TRPC 的系统,这些系统常见于原肠胚(例如苍蝇和软体动物)视觉。

相似文献

1
The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway.
Proc Biol Sci. 2010 Jul 7;277(1690):1963-9. doi: 10.1098/rspb.2009.1797. Epub 2010 Mar 10.
2
Cnidocyte discharge is regulated by light and opsin-mediated phototransduction.
BMC Biol. 2012 Mar 5;10:17. doi: 10.1186/1741-7007-10-17.
3
Molecular evolution and expression of opsin genes in Hydra vulgaris.
BMC Genomics. 2019 Dec 17;20(1):992. doi: 10.1186/s12864-019-6349-y.
4
Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy.
Int J Mol Sci. 2018 Mar 7;19(3):749. doi: 10.3390/ijms19030749.
5
Prolific Origination of Eyes in Cnidaria with Co-option of Non-visual Opsins.
Curr Biol. 2018 Aug 6;28(15):2413-2419.e4. doi: 10.1016/j.cub.2018.05.055. Epub 2018 Jul 19.
6
Diurnal and circadian regulation of opsin-like transcripts in the eyeless cnidarian .
Biomol Concepts. 2024 Mar 19;15(1). doi: 10.1515/bmc-2022-0044. eCollection 2024 Jan 1.
7
Evolution of the vertebrate phototransduction cascade activation steps.
Dev Biol. 2017 Nov 1;431(1):77-92. doi: 10.1016/j.ydbio.2017.03.018. Epub 2017 Mar 25.
9
The comb jelly opsins and the origins of animal phototransduction.
Genome Biol Evol. 2014 Jul 24;6(8):1964-71. doi: 10.1093/gbe/evu154.
10
Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction.
J Exp Biol. 2001 Sep;204(Pt 17):2921-31. doi: 10.1242/jeb.204.17.2921.

引用本文的文献

1
Comparative Analysis of Convergent Jellyfish Eyes Reveals Extensive Differences in Expression of Vision-Related Genes.
Ecol Evol. 2025 Jul 14;15(7):e71784. doi: 10.1002/ece3.71784. eCollection 2025 Jul.
3
Functional characterization of optic photoreception in Lymnaea stagnalis.
PLoS One. 2024 Nov 12;19(11):e0313407. doi: 10.1371/journal.pone.0313407. eCollection 2024.
4
Phototaxis is a satiety-dependent behavioral sequence in Hydra vulgaris.
J Exp Biol. 2024 Sep 15;227(18). doi: 10.1242/jeb.247503. Epub 2024 Sep 25.
6
Phototactic preference and its genetic basis in the planulae of the colonial Hydrozoan .
bioRxiv. 2024 Apr 1:2024.03.28.585045. doi: 10.1101/2024.03.28.585045.
7
Neuronal gene expression in two generations of the marine parasitic worm, Cryptocotyle lingua.
Commun Biol. 2023 Dec 18;6(1):1279. doi: 10.1038/s42003-023-05675-4.
9
On being a Hydra with, and without, a nervous system: what do neurons add?
Anim Cogn. 2023 Nov;26(6):1799-1816. doi: 10.1007/s10071-023-01816-8. Epub 2023 Aug 4.

本文引用的文献

2
Key transitions during the evolution of animal phototransduction: novelty, "tree-thinking," co-option, and co-duplication.
Integr Comp Biol. 2007 Nov;47(5):759-69. doi: 10.1093/icb/icm050. Epub 2007 Jun 22.
3
Reconstructing ancestral character states: a critical reappraisal.
Trends Ecol Evol. 1998 Sep 1;13(9):361-6. doi: 10.1016/s0169-5347(98)01382-2.
4
Phylogenomics revives traditional views on deep animal relationships.
Curr Biol. 2009 Apr 28;19(8):706-12. doi: 10.1016/j.cub.2009.02.052. Epub 2009 Apr 2.
5
Modulation of the cGMP signaling pathway by melatonin in pancreatic beta-cells.
J Pineal Res. 2009 Mar;46(2):140-7. doi: 10.1111/j.1600-079X.2008.00638.x. Epub 2008 Oct 8.
6
Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15576-80. doi: 10.1073/pnas.0806215105. Epub 2008 Oct 1.
7
Assembly of the cnidarian camera-type eye from vertebrate-like components.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8989-93. doi: 10.1073/pnas.0800388105. Epub 2008 Jun 24.
8
Type II opsins: evolutionary origin by internal domain duplication?
J Mol Evol. 2008 May;66(5):417-23. doi: 10.1007/s00239-008-9076-6. Epub 2008 Apr 8.
9
Evolution and functional diversity of jellyfish opsins.
Curr Biol. 2008 Jan 8;18(1):51-5. doi: 10.1016/j.cub.2007.11.059. Epub 2007 Dec 20.
10
The origins of novel protein interactions during animal opsin evolution.
PLoS One. 2007 Oct 17;2(10):e1054. doi: 10.1371/journal.pone.0001054.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验