Suppr超能文献

青蒿素通过其特有的线粒体激活作用直接靶向疟原虫线粒体。

Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation.

机构信息

The State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China.

出版信息

PLoS One. 2010 Mar 8;5(3):e9582. doi: 10.1371/journal.pone.0009582.

Abstract

The biological mode of action of artemisinin, a potent antimalarial, has long been controversial. Previously we established a yeast model addressing its mechanism of action and found mitochondria the key in executing artemisinin's action. Here we present data showing that artemisinin directly acts on mitochondria and it inhibits malaria in a similar way as yeast. Specifically, artemisinin and its homologues exhibit correlated activities against malaria and yeast, with the peroxide bridge playing a key role for their inhibitory action in both organisms. In addition, we showed that artemisinins are distributed to malarial mitochondria and directly impair their functions when isolated mitochondria were tested. In efforts to explore how the action specificity of artemisinin is achieved, we found strikingly rapid and dramatic reactive oxygen species (ROS) production is induced with artemisinin in isolated yeast and malarial but not mammalian mitochondria, and ROS scavengers can ameliorate the effects of artemisinin. Deoxyartemisinin, which lacks an endoperoxide bridge, has no effect on membrane potential or ROS production in malarial mitochondria. OZ209, a distantly related antimalarial endoperoxide, also causes ROS production and depolarization in isolated malarial mitochondria. Finally, interference of mitochondrial electron transport chain (ETC) can alter the sensitivity of the parasite towards artemisinin. Addition of iron chelator desferrioxamine drastically reduces ETC activity as well as mitigates artemisinin-induced ROS production. Taken together, our results indicate that mitochondrion is an important direct target, if not the sole one, in the antimalarial action of artemisinins. We suggest that fundamental differences among mitochondria from different species delineate the action specificity of this class of drugs, and differing from many other drugs, the action specificity of artemisinins originates from their activation mechanism.

摘要

青蒿素是一种强效抗疟药物,其生物学作用模式一直存在争议。我们之前建立了一个酵母模型来研究其作用机制,发现线粒体是执行青蒿素作用的关键。在这里,我们提供的数据表明,青蒿素直接作用于线粒体,其抗疟作用方式与酵母相似。具体来说,青蒿素及其类似物对疟原虫和酵母均表现出相关活性,过氧桥在两者的抑制作用中起着关键作用。此外,我们还表明青蒿素被分配到疟原虫线粒体中,并在分离的线粒体进行测试时直接损害其功能。为了探索青蒿素作用特异性是如何实现的,我们发现青蒿素在分离的酵母和疟原虫线粒体中会迅速、显著地诱导活性氧(ROS)产生,但在哺乳动物线粒体中则不会,并且 ROS 清除剂可以减轻青蒿素的作用。缺乏内过氧桥的脱氧青蒿素对疟原虫线粒体的膜电位或 ROS 产生没有影响。与青蒿素亲缘关系较远的抗疟内过氧化物 OZ209 也会导致分离的疟原虫线粒体中 ROS 产生和去极化。最后,线粒体电子传递链(ETC)的干扰会改变寄生虫对青蒿素的敏感性。添加铁螯合剂去铁胺会大大降低 ETC 活性,并减轻青蒿素诱导的 ROS 产生。总之,我们的结果表明,线粒体是青蒿素抗疟作用的一个重要直接靶点,如果不是唯一靶点的话。我们建议,不同物种的线粒体之间的基本差异划定了这类药物的作用特异性,与许多其他药物不同,青蒿素的作用特异性源自其激活机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4a3/2833198/a4ccd08bb9dd/pone.0009582.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验