集成在闭环装置中的交流电动力学细胞分离。
Integrated AC electrokinetic cell separation in a closed-loop device.
机构信息
Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecualar Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
出版信息
Lab Chip. 2010 Mar 21;10(6):718-26. doi: 10.1039/b917220c. Epub 2010 Jan 4.
We integrate electrothermally induced micro-pumps and dielectrophoretic (DEP) traps into micro-circulating fluidic channel loops for yeast cell concentration and separation, two important on-chip cell manipulation tasks, with the same embedded electrodes on-chip. Each fluidic loop design contains well-defined high and low field regions that serve for both fluid transport and cellular manipulation. From a detailed study into the frequency dependent DEP behavior of viable (live) and non-viable (dead) yeast, we demonstrate several operating modes that utilize positive DEP (pDEP) and negative DEP (nDEP) to concentrate both types of cells at either the high or low electric field region and to separate one cell type to a high-field region and one to a low-field region. Because the cells visit the trapping regions repeatedly with the circulating loop design and because of the high shear rates at these stations, our device offers very rapid cell separation and concentration. Two circulating loop designs--one a four-sided square loop, the other a three-sided triangle, with different spatial symmetries and with linear dimensions less than 1 mm, are presented.
我们将电热诱导微泵和介电泳(DEP)阱集成到微循环流道环中,用于酵母细胞浓缩和分离这两个重要的芯片上细胞操作任务,这些任务使用的是相同的嵌入式芯片电极。每个流道环设计都包含明确定义的高场和低场区域,用于流体输送和细胞操作。通过对活(存活)和非活(死亡)酵母的频率相关 DEP 行为进行详细研究,我们展示了几种操作模式,这些模式利用正 DEP(pDEP)和负 DEP(nDEP)将两种类型的细胞集中在高电场或低电场区域,并将一种细胞类型分离到高电场区域,另一种细胞类型分离到低电场区域。由于细胞在循环环设计中反复进入捕获区域,并且在这些位置的剪切率很高,因此我们的设备提供了非常快速的细胞分离和浓缩。我们提出了两种循环环设计——一种是四边正方形环,另一种是三边三角形环,它们具有不同的空间对称性,线性尺寸小于 1 毫米。