Institute of Micro & Nanotechnology, Old Dominion University, Norfolk, Virginia 23529, USA.
Biomicrofluidics. 2012 Jul 13;6(3):34103. doi: 10.1063/1.4737121. Print 2012 Sep.
A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250 μm thick and 750 μm in radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction. This number is about 1000 folds lower than the capacity of conventional fixtures. A T-cell leukemia cell line Jurkat is tested using the microfluidic device. Measurements of deionized water and salt solutions are utilized to determine parasitic effects and geometric capacitance of the device. Physical models, including Maxwell-Wagner mixture and double shell models, are used to derive quantities for sub-cellular units. Clausius-Mossotti factor of Jurkat cells is extracted from the impedance spectrum. Effects of cellular heterogeneity are discussed and parameterized. Jurkat cells are also tested with a time domain reflectometry system for verification of the microfluidic device. Results indicate good agreement of values obtained with both techniques. The device can be used as a unique cell diagnostic tool to yield information on sub-cellular units.
开发了一种能够进行介电谱测量的微流控设备。该设备由一个测量腔组成,厚度为 250μm,半径为 750μm。假设细胞半径和体积分数的平均值,大约有 1000 个细胞可以容纳在腔室内。这个数量比传统夹具的容量低大约 1000 倍。使用微流控设备对 T 细胞白血病细胞系 Jurkat 进行了测试。利用去离子水和盐溶液的测量结果来确定设备的寄生效应和几何电容。使用 Maxwell-Wagner 混合物和双壳模型等物理模型来推导亚细胞单元的数量。从阻抗谱中提取 Jurkat 细胞的 Clausius-Mossotti 因子。讨论并参数化了细胞异质性的影响。还使用时域反射计系统对 Jurkat 细胞进行了测试,以验证微流控设备。结果表明,两种技术获得的值吻合良好。该设备可用作独特的细胞诊断工具,提供有关亚细胞单元的信息。