Suppr超能文献

微流控阻抗谱学作为定量生物学和生物技术的工具。

Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology.

机构信息

Institute of Micro & Nanotechnology, Old Dominion University, Norfolk, Virginia 23529, USA.

出版信息

Biomicrofluidics. 2012 Jul 13;6(3):34103. doi: 10.1063/1.4737121. Print 2012 Sep.

Abstract

A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250 μm thick and 750 μm in radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction. This number is about 1000 folds lower than the capacity of conventional fixtures. A T-cell leukemia cell line Jurkat is tested using the microfluidic device. Measurements of deionized water and salt solutions are utilized to determine parasitic effects and geometric capacitance of the device. Physical models, including Maxwell-Wagner mixture and double shell models, are used to derive quantities for sub-cellular units. Clausius-Mossotti factor of Jurkat cells is extracted from the impedance spectrum. Effects of cellular heterogeneity are discussed and parameterized. Jurkat cells are also tested with a time domain reflectometry system for verification of the microfluidic device. Results indicate good agreement of values obtained with both techniques. The device can be used as a unique cell diagnostic tool to yield information on sub-cellular units.

摘要

开发了一种能够进行介电谱测量的微流控设备。该设备由一个测量腔组成,厚度为 250μm,半径为 750μm。假设细胞半径和体积分数的平均值,大约有 1000 个细胞可以容纳在腔室内。这个数量比传统夹具的容量低大约 1000 倍。使用微流控设备对 T 细胞白血病细胞系 Jurkat 进行了测试。利用去离子水和盐溶液的测量结果来确定设备的寄生效应和几何电容。使用 Maxwell-Wagner 混合物和双壳模型等物理模型来推导亚细胞单元的数量。从阻抗谱中提取 Jurkat 细胞的 Clausius-Mossotti 因子。讨论并参数化了细胞异质性的影响。还使用时域反射计系统对 Jurkat 细胞进行了测试,以验证微流控设备。结果表明,两种技术获得的值吻合良好。该设备可用作独特的细胞诊断工具,提供有关亚细胞单元的信息。

相似文献

1
Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology.
Biomicrofluidics. 2012 Jul 13;6(3):34103. doi: 10.1063/1.4737121. Print 2012 Sep.
2
Dielectric properties of isolated adrenal chromaffin cells determined by microfluidic impedance spectroscopy.
Bioelectrochemistry. 2018 Feb;119:84-91. doi: 10.1016/j.bioelechem.2017.09.001. Epub 2017 Sep 5.
3
A separability parameter for dielectrophoretic cell separation.
Electrophoresis. 2013 Apr;34(7):1051-8. doi: 10.1002/elps.201200411. Epub 2013 Mar 7.
5
Maxwell's mixing equation revisited: characteristic impedance equations for ellipsoidal cells.
Biophys J. 2015 Jul 21;109(2):194-208. doi: 10.1016/j.bpj.2015.06.021.
6
Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
Biosens Bioelectron. 2013 Nov 15;49:348-59. doi: 10.1016/j.bios.2013.04.017. Epub 2013 May 15.
7
Broadband RF impedance spectroscopy in micromachined microfluidic channels.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4042-5. doi: 10.1109/IEMBS.2011.6091004.
8
Dynamic monitoring of single cell lysis in an impedance-based microfluidic device.
Biomed Microdevices. 2016 Aug;18(4):56. doi: 10.1007/s10544-016-0081-z.
9
Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
Biosens Bioelectron. 2019 May 15;133:16-23. doi: 10.1016/j.bios.2019.03.002. Epub 2019 Mar 7.
10

引用本文的文献

2
Dielectric Spectroscopy Based Detection of Specific and Nonspecific Cellular Mechanisms.
Sensors (Basel). 2021 May 3;21(9):3177. doi: 10.3390/s21093177.
3
Characterization of Single-Nucleus Electrical Properties by Microfluidic Constriction Channel.
Micromachines (Basel). 2019 Oct 31;10(11):740. doi: 10.3390/mi10110740.
7
Application of Vertical Electrodes in Microfluidic Channels for Impedance Analysis.
Micromachines (Basel). 2016 May 25;7(6):96. doi: 10.3390/mi7060096.

本文引用的文献

1
Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells.
Biomicrofluidics. 2012 Mar;6(1):14113-1411310. doi: 10.1063/1.3690470. Epub 2012 Mar 1.
2
Refinement of the theory for extracting cell dielectric properties from dielectrophoresis and electrorotation experiments.
Biomicrofluidics. 2011 Dec;5(4):44109-4410916. doi: 10.1063/1.3659282. Epub 2011 Nov 17.
3
Electronic detection of dielectrophoretic forces exerted on particles flowing over interdigitated electrodes.
Biomicrofluidics. 2012 Jun;6(2):24117-2411715. doi: 10.1063/1.4709387. Epub 2012 May 3.
5
Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity.
Lab Chip. 2011 Sep 7;11(17):2893-900. doi: 10.1039/c1lc20307j. Epub 2011 Jul 21.
6
Label-free electrical discrimination of cells at normal, apoptotic and necrotic status with a microfluidic device.
J Chromatogr A. 2011 Aug 19;1218(33):5725-9. doi: 10.1016/j.chroma.2011.06.102. Epub 2011 Jul 3.
7
Dielectrophoretic separation of mouse melanoma clones.
Biomicrofluidics. 2010 Jun 16;4(2):021101. doi: 10.1063/1.3447702.
8
Review article-dielectrophoresis: status of the theory, technology, and applications.
Biomicrofluidics. 2010 Jun 29;4(2):022811. doi: 10.1063/1.3456626.
9
Dielectrophoretic separation of colorectal cancer cells.
Biomicrofluidics. 2010 Jan 12;4(1):13204. doi: 10.1063/1.3279786.
10
Integrated AC electrokinetic cell separation in a closed-loop device.
Lab Chip. 2010 Mar 21;10(6):718-26. doi: 10.1039/b917220c. Epub 2010 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验