Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531, Japan.
J Biol Chem. 2012 Apr 6;287(15):12060-9. doi: 10.1074/jbc.M111.244020. Epub 2011 Dec 14.
Ozone depletion increases terrestrial solar ultraviolet B (UV-B; 280-315 nm) radiation, intensifying the risks plants face from DNA damage, especially covalent cyclobutane pyrimidine dimers (CPD). Without efficient repair, UV-B destroys genetic integrity, but plant breeding creates rice cultivars with more robust photolyase (PHR) DNA repair activity as an environmental adaptation. So improved strains of Oryza sativa (rice), the staple food for Asia, have expanded rice cultivation worldwide. Efficient light-driven PHR enzymes restore normal pyrimidines to UV-damaged DNA by using blue light via flavin adenine dinucleotide to break pyrimidine dimers. Eukaryotes duplicated the photolyase gene, producing PHRs that gained functions and adopted activities that are distinct from those of prokaryotic PHRs yet are incompletely understood. Many multicellular organisms have two types of PHR: (6-4) PHR, which structurally resembles bacterial CPD PHRs but recognizes different substrates, and Class II CPD PHR, which is remarkably dissimilar in sequence from bacterial PHRs despite their common substrate. To understand the enigmatic DNA repair mechanisms of PHRs in eukaryotic cells, we determined the first crystal structure of a eukaryotic Class II CPD PHR from the rice cultivar Sasanishiki. Our 1.7 Å resolution PHR structure reveals structure-activity relationships in Class II PHRs and tuning for enhanced UV tolerance in plants. Structural comparisons with prokaryotic Class I CPD PHRs identified differences in the binding site for UV-damaged DNA substrate. Convergent evolution of both flavin hydrogen bonding and a Trp electron transfer pathway establish these as critical functional features for PHRs. These results provide a paradigm for light-dependent DNA repair in higher organisms.
臭氧消耗会增加陆地太阳紫外线 B(UV-B;280-315nm)辐射,加剧植物面临的 DNA 损伤风险,尤其是共价环丁烷嘧啶二聚体(CPD)。如果没有有效的修复,UV-B 会破坏遗传完整性,但植物育种创造了具有更强光解酶(PHR)DNA 修复活性的水稻品种,以适应环境。因此,作为亚洲主食的改良水稻品种 Oryza sativa(水稻)在全球范围内扩大了水稻种植。高效的光驱动 PHR 酶通过黄素腺嘌呤二核苷酸利用蓝光将正常嘧啶恢复到 UV 损伤的 DNA 中,从而打破嘧啶二聚体。真核生物复制了光解酶基因,产生了 PHR,它们获得了功能,并采用了与原核 PHR 不同的活性,但这些活性尚未完全理解。许多多细胞生物有两种类型的 PHR:(6-4)PHR,其结构类似于细菌 CPD PHR,但识别不同的底物,以及 II 类 CPD PHR,尽管它们的共同底物与细菌 PHR 在序列上差异显著。为了了解真核细胞中 PHR 的神秘 DNA 修复机制,我们从水稻品种 Sasanishiki 中确定了第一个真核 II 类 CPD PHR 的晶体结构。我们 1.7Å分辨率的 PHR 结构揭示了 II 类 PHR 的结构-活性关系,并为植物增强对 UV 的耐受性进行了调谐。与原核 I 类 CPD PHR 的结构比较确定了与 UV 损伤 DNA 底物结合的差异。黄素氢键和色氨酸电子转移途径的趋同进化确立了这些是 PHR 关键功能特征。这些结果为高等生物中依赖光的 DNA 修复提供了范例。