Suppr超能文献

真核生物 II 类环丁烷嘧啶二聚体光解酶结构揭示了植物提高耐紫外线能力的基础。

Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants.

机构信息

Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531, Japan.

出版信息

J Biol Chem. 2012 Apr 6;287(15):12060-9. doi: 10.1074/jbc.M111.244020. Epub 2011 Dec 14.

Abstract

Ozone depletion increases terrestrial solar ultraviolet B (UV-B; 280-315 nm) radiation, intensifying the risks plants face from DNA damage, especially covalent cyclobutane pyrimidine dimers (CPD). Without efficient repair, UV-B destroys genetic integrity, but plant breeding creates rice cultivars with more robust photolyase (PHR) DNA repair activity as an environmental adaptation. So improved strains of Oryza sativa (rice), the staple food for Asia, have expanded rice cultivation worldwide. Efficient light-driven PHR enzymes restore normal pyrimidines to UV-damaged DNA by using blue light via flavin adenine dinucleotide to break pyrimidine dimers. Eukaryotes duplicated the photolyase gene, producing PHRs that gained functions and adopted activities that are distinct from those of prokaryotic PHRs yet are incompletely understood. Many multicellular organisms have two types of PHR: (6-4) PHR, which structurally resembles bacterial CPD PHRs but recognizes different substrates, and Class II CPD PHR, which is remarkably dissimilar in sequence from bacterial PHRs despite their common substrate. To understand the enigmatic DNA repair mechanisms of PHRs in eukaryotic cells, we determined the first crystal structure of a eukaryotic Class II CPD PHR from the rice cultivar Sasanishiki. Our 1.7 Å resolution PHR structure reveals structure-activity relationships in Class II PHRs and tuning for enhanced UV tolerance in plants. Structural comparisons with prokaryotic Class I CPD PHRs identified differences in the binding site for UV-damaged DNA substrate. Convergent evolution of both flavin hydrogen bonding and a Trp electron transfer pathway establish these as critical functional features for PHRs. These results provide a paradigm for light-dependent DNA repair in higher organisms.

摘要

臭氧消耗会增加陆地太阳紫外线 B(UV-B;280-315nm)辐射,加剧植物面临的 DNA 损伤风险,尤其是共价环丁烷嘧啶二聚体(CPD)。如果没有有效的修复,UV-B 会破坏遗传完整性,但植物育种创造了具有更强光解酶(PHR)DNA 修复活性的水稻品种,以适应环境。因此,作为亚洲主食的改良水稻品种 Oryza sativa(水稻)在全球范围内扩大了水稻种植。高效的光驱动 PHR 酶通过黄素腺嘌呤二核苷酸利用蓝光将正常嘧啶恢复到 UV 损伤的 DNA 中,从而打破嘧啶二聚体。真核生物复制了光解酶基因,产生了 PHR,它们获得了功能,并采用了与原核 PHR 不同的活性,但这些活性尚未完全理解。许多多细胞生物有两种类型的 PHR:(6-4)PHR,其结构类似于细菌 CPD PHR,但识别不同的底物,以及 II 类 CPD PHR,尽管它们的共同底物与细菌 PHR 在序列上差异显著。为了了解真核细胞中 PHR 的神秘 DNA 修复机制,我们从水稻品种 Sasanishiki 中确定了第一个真核 II 类 CPD PHR 的晶体结构。我们 1.7Å分辨率的 PHR 结构揭示了 II 类 PHR 的结构-活性关系,并为植物增强对 UV 的耐受性进行了调谐。与原核 I 类 CPD PHR 的结构比较确定了与 UV 损伤 DNA 底物结合的差异。黄素氢键和色氨酸电子转移途径的趋同进化确立了这些是 PHR 关键功能特征。这些结果为高等生物中依赖光的 DNA 修复提供了范例。

相似文献

1
Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants.
J Biol Chem. 2012 Apr 6;287(15):12060-9. doi: 10.1074/jbc.M111.244020. Epub 2011 Dec 14.
3
Functional Conversion of CPD and (6-4) Photolyases by Mutation.
Biochemistry. 2016 Aug 2;55(30):4173-83. doi: 10.1021/acs.biochem.6b00361. Epub 2016 Jul 19.
4
Computational studies on photolyase (Phr) proteins of cyanobacteria.
Can J Microbiol. 2022 Feb;68(2):111-137. doi: 10.1139/cjm-2021-0167. Epub 2021 Sep 29.
9
Identification of a phosphorylation site in cyclobutane pyrimidine dimer photolyase of rice.
Plant Physiol Biochem. 2013 Feb;63:24-9. doi: 10.1016/j.plaphy.2012.11.003. Epub 2012 Nov 23.
10

引用本文的文献

1
Elucidation of a distinct photoreduction pathway in class II photolyase.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2416284121. doi: 10.1073/pnas.2416284121. Epub 2024 Dec 31.
2
How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants.
Int J Mol Sci. 2023 Jan 26;24(3):2404. doi: 10.3390/ijms24032404.
3
The Gain and Loss of Cryptochrome/Photolyase Family Members during Evolution.
Genes (Basel). 2022 Sep 8;13(9):1613. doi: 10.3390/genes13091613.
4
All You Need Is Light. Photorepair of UV-Induced Pyrimidine Dimers.
Genes (Basel). 2020 Nov 4;11(11):1304. doi: 10.3390/genes11111304.
5
Structural Aspects of DNA Repair and Recombination in Crop Improvement.
Front Genet. 2020 Sep 11;11:574549. doi: 10.3389/fgene.2020.574549. eCollection 2020.
7
Translesion Synthesis in Plants: Ultraviolet Resistance and Beyond.
Front Plant Sci. 2019 Oct 9;10:1208. doi: 10.3389/fpls.2019.01208. eCollection 2019.
8
Sub-nanosecond tryptophan radical deprotonation mediated by a protein-bound water cluster in class II DNA photolyases.
Chem Sci. 2017 Dec 11;9(5):1200-1212. doi: 10.1039/c7sc03969g. eCollection 2018 Feb 7.
9
The binding structure and affinity of photodamaged duplex DNA with members of the photolyase/cryptochrome family: A computational study.
Biophys Physicobiol. 2018 Jan 20;15:18-27. doi: 10.2142/biophysico.15.0_18. eCollection 2018.
10
Photolyase: Dynamics and electron-transfer mechanisms of DNA repair.
Arch Biochem Biophys. 2017 Oct 15;632:158-174. doi: 10.1016/j.abb.2017.08.007. Epub 2017 Aug 9.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Light-induced conformational change and product release in DNA repair by (6-4) photolyase.
J Am Chem Soc. 2011 Feb 23;133(7):2183-91. doi: 10.1021/ja107691w. Epub 2011 Jan 27.
5
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
6
Light-induced activation of class II cyclobutane pyrimidine dimer photolyases.
DNA Repair (Amst). 2010 May 4;9(5):495-505. doi: 10.1016/j.dnarep.2010.01.014. Epub 2010 Mar 15.
7
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
8
Flipping of alkylated DNA damage bridges base and nucleotide excision repair.
Nature. 2009 Jun 11;459(7248):808-13. doi: 10.1038/nature08076.
9
Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes.
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):6962-7. doi: 10.1073/pnas.0809180106. Epub 2009 Apr 9.
10
Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor.
Angew Chem Int Ed Engl. 2009;48(2):404-7. doi: 10.1002/anie.200803102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验