Suppr超能文献

马里亚纳海槽热液活动和非活动喷口硫化物结构中的生物地理学和生物多样性。

Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.

机构信息

Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan.

出版信息

Appl Environ Microbiol. 2010 May;76(9):2968-79. doi: 10.1128/AEM.00478-10. Epub 2010 Mar 12.

Abstract

The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and microbial ecosystems in marine environments.

摘要

运用非培养方法研究了活跃和不活跃喷口硫化物结构中微生物群落的丰度、多样性、活性和组成。这些硫化物结构是在马里亚纳海槽弧后扩张中心的轴上和轴外的四个热液场采集的。通过分析总有机含量、酶活性和 16S rRNA 基因的拷贝数来确定样品中的微生物丰度和活性。为了评估微生物群落的多样性和组成,从硫化物结构中构建了包括细菌和古菌型的 16S rRNA 基因克隆文库。尽管采样点的地质背景不同,但与 Epsilonproteobacteria 和培养的高温古菌相关的型在活跃喷口样品的文库中丰富。相比之下,这些型在不活跃喷口样品的文库中的相对丰度极低。这些结果表明,硫化物结构内微生物群落的组成取决于热液活动的程度,统计分析支持了这一观点。比较分析表明,不活跃喷口硫化物结构内微生物群落的丰度、活性和多样性可能与活跃喷口结构内的相似,尽管这两种喷口的微生物群落组成不同。不活跃喷口硫化物结构中的微生物群落组成与海底玄武岩相似,而与海洋沉积物或活跃喷口硫化物结构中的微生物群落组成不同,这表明海底的微生物群落组成可能受到可用能源的限制。我们的研究结果为理解海洋环境中的生物地理学、生物多样性和微生物生态系统提供了有价值的信息。

相似文献

2
Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough.
Environ Microbiol. 2009 Aug;11(8):2094-111. doi: 10.1111/j.1462-2920.2009.01930.x. Epub 2009 Apr 22.
3
Individual hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial communities.
FEMS Microbiol Ecol. 2009 Dec;70(3):413-24. doi: 10.1111/j.1574-6941.2009.00747.x. Epub 2009 Sep 21.
4
Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents.
FEMS Microbiol Ecol. 2015 Jan;91(1):1-11. doi: 10.1093/femsec/fiu016. Epub 2014 Dec 5.
6
Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing.
Microbes Environ. 2012;27(4):382-90. doi: 10.1264/jsme2.me12032. Epub 2012 Apr 18.
7
Microbial population structures in the deep marine biosphere.
Science. 2007 Oct 5;318(5847):97-100. doi: 10.1126/science.1146689.
8
Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.
Microb Ecol. 2018 Aug;76(2):387-403. doi: 10.1007/s00248-018-1144-x. Epub 2018 Jan 21.
10
The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.
PLoS Biol. 2012 Jan;10(1):e1001234. doi: 10.1371/journal.pbio.1001234. Epub 2012 Jan 3.

引用本文的文献

4
Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity.
Nat Microbiol. 2024 Mar;9(3):657-668. doi: 10.1038/s41564-024-01599-9. Epub 2024 Jan 29.
6
Bullet-shaped magnetosomes and metagenomic-based magnetosome gene profiles in a deep-sea hydrothermal vent chimney.
Front Microbiol. 2023 Jun 27;14:1174899. doi: 10.3389/fmicb.2023.1174899. eCollection 2023.
7
Potential autotrophic carbon-fixer and Fe(II)-oxidizer sp. MM125-6 isolated from Wocan hydrothermal field.
Front Microbiol. 2022 Oct 14;13:930601. doi: 10.3389/fmicb.2022.930601. eCollection 2022.
8
Copper-Nanocoated Ultra-Small Cells in Grain Boundaries Inside an Extinct Vent Chimney.
Front Microbiol. 2022 Jun 7;13:864205. doi: 10.3389/fmicb.2022.864205. eCollection 2022.
9
One-Year Incubation of Pyrite at the Deep Seafloor and Its Microbiological and Biogeochemical Characterizations.
Appl Environ Microbiol. 2021 Nov 10;87(23):e0097721. doi: 10.1128/AEM.00977-21. Epub 2021 Sep 22.

本文引用的文献

1
gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with species.
Microbiology (Reading). 1996 Apr;142(4):785-790. doi: 10.1099/00221287-142-4-785.
2
Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176).
FEMS Microbiol Ecol. 2003 Jul 1;45(2):115-25. doi: 10.1016/S0168-6496(03)00128-4.
3
Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough.
Environ Microbiol. 2009 Dec;11(12):3210-22. doi: 10.1111/j.1462-2920.2009.02031.x. Epub 2009 Aug 18.
5
Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough.
Environ Microbiol. 2009 Aug;11(8):2094-111. doi: 10.1111/j.1462-2920.2009.01930.x. Epub 2009 Apr 22.
6
rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea.
Nucleic Acids Res. 2009 Jan;37(Database issue):D489-93. doi: 10.1093/nar/gkn689. Epub 2008 Oct 23.
7
Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts.
ISME J. 2009 Feb;3(2):231-42. doi: 10.1038/ismej.2008.92. Epub 2008 Oct 9.
9
Abundance and diversity of microbial life in ocean crust.
Nature. 2008 May 29;453(7195):653-6. doi: 10.1038/nature06899.
10
Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance.
FEMS Microbiol Ecol. 2008 Jul;65(1):1-14. doi: 10.1111/j.1574-6941.2008.00502.x. Epub 2008 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验