Suppr超能文献

SFRS13A 在低密度脂蛋白受体剪接中的作用。

Role of SFRS13A in low-density lipoprotein receptor splicing.

机构信息

Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536-0230, USA.

出版信息

Hum Mutat. 2010 Jun;31(6):702-9. doi: 10.1002/humu.21244.

Abstract

Low-density lipoprotein receptor (LDLR) is a major apolipoprotein E (APOE) receptor and thereby is critical to cholesterol homeostasis and, possibly, Alzheimer disease (AD) development. We previously identified a single nucleotide polymorphism (SNP), rs688:C>T, that modulates LDLR exon 12 splicing and is associated with cholesterol levels in premenopausal women and with Alzheimer disease in men. To gain additional insights into LDLR splicing regulation, we seek to identify splicing factors that modulate LDLR splicing efficiency. By using an in vitro minigene study, we first found that ectopic expression of SFRS3 (SRp20), SFRS13A (SRp38), SFRS13A-2 (SRp38-2), and RBMX (hnRNP G) robustly decreased LDLR splicing efficiency. Although SFRS3 and SFRS13A specifically increased the LDLR transcript lacking exon 11, SFRS13A-2 and RBMX primarily increased the LDLR isoform lacking both exons 11 and 12. When we evaluated the relationship between the expression of these splicing factors and LDLR splicing in human brain and liver specimens, we found that overall SFRS13A expression was significantly associated with LDLR splicing efficiency in vivo. We interpret these results as suggesting that SFRS13A regulates LDLR splicing efficiency and may therefore emerge as a modulator of cholesterol homeostasis.

摘要

低密度脂蛋白受体 (LDLR) 是载脂蛋白 E (APOE) 的主要受体,因此对胆固醇稳态和阿尔茨海默病 (AD) 的发展至关重要。我们之前发现了一个单核苷酸多态性 (SNP),rs688:C>T,它调节 LDLR 外显子 12 的剪接,并与绝经前妇女的胆固醇水平和男性的阿尔茨海默病相关。为了更深入地了解 LDLR 剪接调控,我们试图鉴定调节 LDLR 剪接效率的剪接因子。通过使用体外小基因研究,我们首先发现异位表达 SFRS3 (SRp20)、SFRS13A (SRp38)、SFRS13A-2 (SRp38-2) 和 RBMX (hnRNP G) 可显著降低 LDLR 剪接效率。尽管 SFRS3 和 SFRS13A 特异性增加了缺失外显子 11 的 LDLR 转录本,但 SFRS13A-2 和 RBMX 主要增加了缺失外显子 11 和 12 的 LDLR 同工型。当我们评估这些剪接因子在人脑和肝组织标本中的表达与 LDLR 剪接之间的关系时,我们发现 SFRS13A 的总体表达与体内 LDLR 剪接效率显著相关。我们将这些结果解释为表明 SFRS13A 调节 LDLR 剪接效率,因此可能成为胆固醇稳态的调节剂。

相似文献

1
Role of SFRS13A in low-density lipoprotein receptor splicing.
Hum Mutat. 2010 Jun;31(6):702-9. doi: 10.1002/humu.21244.
4
Mutual effect of rs688 and rs5925 in regulating low-density lipoprotein receptor splicing.
DNA Cell Biol. 2014 Dec;33(12):869-75. doi: 10.1089/dna.2014.2577.
5
microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator.
Atherosclerosis. 2015 Dec;243(2):523-32. doi: 10.1016/j.atherosclerosis.2015.10.026. Epub 2015 Oct 23.
6
Multiple properties of the splicing repressor SRp38 distinguish it from typical SR proteins.
Mol Cell Biol. 2005 Sep;25(18):8334-43. doi: 10.1128/MCB.25.18.8334-8343.2005.
7
Expression and regulation of a low-density lipoprotein receptor exon 12 splice variant.
J Neurochem. 2010 Nov;115(3):614-24. doi: 10.1111/j.1471-4159.2010.06972.x. Epub 2010 Sep 28.
8
Elevated Levels of LDL-C are Associated With ApoE4 but Not With the rs688 Polymorphism in the LDLR Gene.
Clin Appl Thromb Hemost. 2016 Jul;22(5):465-70. doi: 10.1177/1076029614568714. Epub 2015 Jan 19.
10
The SR protein SRp38 represses splicing in M phase cells.
Cell. 2002 Nov 1;111(3):407-17. doi: 10.1016/s0092-8674(02)01038-3.

引用本文的文献

1
Genetics of expression and splicing relative to Alzheimer's disease risk.
Res Sq. 2025 Jun 19:rs.3.rs-6735123. doi: 10.21203/rs.3.rs-6735123/v1.
2
Emerging roles of RNA-binding proteins in fatty liver disease.
Wiley Interdiscip Rev RNA. 2024 Mar-Apr;15(2):e1840. doi: 10.1002/wrna.1840.
3
N6-methyladenosine (m6A) modification and its clinical relevance in cognitive dysfunctions.
Aging (Albany NY). 2021 Aug 30;13(16):20716-20737. doi: 10.18632/aging.203457.
5
Identification of SRSF10 as a regulator of SMN2 ISS-N1.
Hum Mutat. 2021 Mar;42(3):246-260. doi: 10.1002/humu.24149. Epub 2020 Dec 16.
6
Integrated identification of key genes and pathways in Alzheimer's disease via comprehensive bioinformatical analyses.
Hereditas. 2019 Jul 16;156:25. doi: 10.1186/s41065-019-0101-0. eCollection 2019.
7
Alzheimer's Disease Genetics and ABCA7 Splicing.
J Alzheimers Dis. 2017;59(2):633-641. doi: 10.3233/JAD-170872.
9

本文引用的文献

2
Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC(A/C)-rich regions in pre-mRNA.
J Biol Chem. 2009 May 22;284(21):14303-15. doi: 10.1074/jbc.M901026200. Epub 2009 Mar 12.
3
RNA and disease.
Cell. 2009 Feb 20;136(4):777-93. doi: 10.1016/j.cell.2009.02.011.
4
Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B.
Cell Mol Life Sci. 2009 Apr;66(7):1239-56. doi: 10.1007/s00018-008-8532-1.
5
Alternative splicing and disease.
Biochim Biophys Acta. 2009 Jan;1792(1):14-26. doi: 10.1016/j.bbadis.2008.09.017. Epub 2008 Oct 17.
6
Tau exon 10 alternative splicing and tauopathies.
Mol Neurodegener. 2008 Jul 10;3:8. doi: 10.1186/1750-1326-3-8.
7
SR proteins and related factors in alternative splicing.
Adv Exp Med Biol. 2007;623:107-22. doi: 10.1007/978-0-387-77374-2_7.
10
Sex-dependent up-regulation of two splicing factors, Psf and Srp20, during hippocampal memory formation.
Learn Mem. 2007 Oct 1;14(10):693-702. doi: 10.1101/lm.640307. Print 2007 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验