Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA.
J Bacteriol. 2010 Jun;192(12):3024-32. doi: 10.1128/JB.01649-09. Epub 2010 Mar 16.
Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces.
变形链球菌是牙菌斑细胞外多糖(EPS)基质形成的关键因素。这些胞外多糖主要由链球菌葡糖基转移酶(Gtfs)合成的葡聚糖提供结合位点,促进微生物在牙齿表面的聚集,并进一步建立致病性生物膜。本研究探讨了(i)变形链球菌 Gtfs 在生物膜 EPS 基质和微菌落形成中的作用,(ii)胞外多糖对微菌落形成的影响,以及(iii)使用新型荧光标记技术在体外建立变形链球菌多物种生物膜。我们的数据表明,gtfB 基因或 gtfB 和 gtfC 基因缺陷的变形链球菌菌株在唾液包被的羟基磷灰石表面形成微菌落的能力明显受损。然而,gtfB(与不溶性葡聚糖合成有关)和 gtfC(与不溶性和可溶性葡聚糖合成有关)的缺失是 EPS 基质和生物膜形成最大减少所必需的。在存在链球菌和内氏放线菌的情况下,变形链球菌在蔗糖中生长会稳定地产生胞外多糖,这使得细菌细胞最初聚集,并进一步发展成高度结构化的微菌落。同时,变形链球菌成为成熟生物膜中的主要物种。在多物种生物膜中存在葡萄糖时,既没有 EPS 基质也没有微菌落形成。我们的数据表明,GtfB 和 GtfC 对于 EPS 基质的建立是必不可少的,但 GtfB 似乎负责变形链球菌微菌落的形成;这些 Gtf 介导的过程可能增强了变形链球菌在牙齿表面生物膜中多物种环境中的竞争力。