Kim Ji-in, Lawson Andrew B, McDermott Suzanne, Aelion C Marjorie
Department of Epidemiology and Biostatistics, University of South Carolina, USA.
Spat Spatiotemporal Epidemiol. 2009 Oct-Dec;1(1):95-102. doi: 10.1016/j.sste.2009.07.003.
A health outcome can be observed at a spatial location and we wish to relate this to a set of environmental measurements made on a sampling grid. The environmental measurements are covariates in the model but due to the interpolation associated with the grid there is an error inherent in the covariate value used at the outcome location. Since there may be multiple measurements made on different covariates there could be considerable uncertainty in the covariate values to be used. In this paper we examine a Bayesian approach to the interpolation problem and also a Bayesian solution to the variable selection issue. We present a series of simulations which outline the problem of recovering the true relationships, and also provide an empirical example.
可以在空间位置观察到健康结果,我们希望将其与在采样网格上进行的一组环境测量相关联。环境测量是模型中的协变量,但由于与网格相关的插值,在结果位置使用的协变量值存在固有误差。由于可能对不同的协变量进行多次测量,因此要使用的协变量值可能存在相当大的不确定性。在本文中,我们研究了插值问题的贝叶斯方法以及变量选择问题的贝叶斯解决方案。我们给出了一系列模拟,概述了恢复真实关系的问题,并提供了一个实证例子。