Department of Statistical Sciences, Wake Forest University, Winston-Salem, 27109, NC, USA.
Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, 27157, NC, USA.
Spat Spatiotemporal Epidemiol. 2023 Aug;46:100593. doi: 10.1016/j.sste.2023.100593. Epub 2023 Jun 16.
The American Community Survey (ACS) is one of the most vital public sources for demographic and socioeconomic characteristics of communities in the United States and is administered by the U.S. Census Bureau every year. The ACS publishes 5-year estimates of community characteristics for all geographical areas and 1-year estimates for areas with population of at least 65,000. Many epidemiological and public health studies use 5-year ACS estimates as explanatory variables in models. However, doing so ignores the uncertainty and averages over variability during the time-period which may lead to biased estimates of covariate effects of interest. In this paper, we propose a Bayesian hierarchical model that accounts for the uncertainty and disentangles the temporal misalignment in the ACS multi-year time-period estimates. We show via simulation that our proposed model more accurately recovers covariate effects compared to models that ignore the temporal misalignment. Lastly, we implement our proposed model to quantify the relationship between yearly, county-level characteristics and the prevalence of frequent mental distress for counties in North Carolina from 2014 to 2018.
美国社区调查(ACS)是美国社区人口统计学和社会经济特征的最重要公共数据源之一,由美国人口普查局每年进行管理。ACS 发布所有地理区域的 5 年社区特征估计值和人口至少为 65,000 的区域的 1 年估计值。许多流行病学和公共卫生研究将 5 年 ACS 估计值用作模型中的解释变量。然而,这样做忽略了时间期间的不确定性和变异性平均值,这可能导致感兴趣的协变量效果的有偏估计。在本文中,我们提出了一个贝叶斯层次模型,该模型考虑了不确定性并分离了 ACS 多年时间估计中的时间失准。我们通过模拟表明,与忽略时间失准的模型相比,我们提出的模型更准确地恢复了协变量效果。最后,我们实施了我们提出的模型,以量化 2014 年至 2018 年北卡罗来纳州各县每年、县级特征与频繁精神困扰患病率之间的关系。