Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK.
Biochem Soc Trans. 2010 Apr;38(2):428-32. doi: 10.1042/BST0380428.
RNAPs (RNA polymerases) are complex molecular machines containing structural domains that co-ordinate the movement of nucleic acid and nucleotide substrates through the catalytic site. X-ray images of bacterial, archaeal and eukaryotic RNAPs have provided a wealth of structural detail over the last decade, but many mechanistic features can only be derived indirectly from such structures. We have therefore implemented a robotic high-throughput structure-function experimental system based on the automatic generation and assaying of hundreds of site-directed mutants in the archaeal RNAP from Methanocaldococcus jannaschii. In the present paper, I focus on recent insights obtained from applying this experimental strategy to the bridge-helix domain. Our work demonstrates that the bridge-helix undergoes substantial conformational changes within a narrowly confined region (mjA' Ala(822)-Gln(823)-Ser(824)) during the nucleotide-addition cycle. Naturally occurring radical sequence variations in plant RNAP IV and V enzymes map to this region. In addition, many mutations within this domain cause a substantial increase in the RNAP catalytic activity ('superactivity'), suggesting that the RNAP active site is conformationally constrained.
RNA 聚合酶(RNAPs)是一种复杂的分子机器,包含结构域,这些结构域共同协调核酸和核苷酸底物在催化位点的运动。过去十年中,细菌、古菌和真核生物的 RNAP 的 X 射线图像提供了丰富的结构细节,但许多机械特征只能从这些结构中间接推断出来。因此,我们基于 Methanocaldococcus jannaschii 的古菌 RNAP 中的数百个定点突变的自动生成和测定,实现了一个基于机器人的高通量结构-功能实验系统。在本文中,我将重点介绍从应用这种实验策略到桥螺旋结构域获得的最新见解。我们的工作表明,在核苷酸添加循环中,桥螺旋在一个狭窄的区域(mjA' Ala(822)-Gln(823)-Ser(824))内经历了实质性的构象变化。植物 RNAP IV 和 V 酶中的自然发生的激进序列变异映射到该区域。此外,该结构域内的许多突变会导致 RNAP 催化活性的大幅增加(“超活性”),这表明 RNAP 活性位点的构象受到限制。