Department of Life Sciences, Imperial College London, UK.
BMC Biol. 2010 Oct 29;8:134. doi: 10.1186/1741-7007-8-134.
Cellular RNA polymerases (RNAPs) are complex molecular machines that combine catalysis with concerted conformational changes in the active center. Previous work showed that kinking of a hinge region near the C-terminus of the Bridge Helix (BH-H(C)) plays a critical role in controlling the catalytic rate.
Here, new evidence for the existence of an additional hinge region in the amino-terminal portion of the Bridge Helix domain (BH-H(N)) is presented. The nanomechanical properties of BH-H(N) emerge as a direct consequence of the highly conserved primary amino acid sequence. Mutations that are predicted to influence its flexibility cause corresponding changes in the rate of the nucleotide addition cycle (NAC). BH-H(N) displays functional properties that are distinct from BH-H(C), suggesting that conformational changes in the Bridge Helix control the NAC via two independent mechanisms.
The properties of two distinct molecular hinges in the Bridge Helix of RNAP determine the functional contribution of this domain to key stages of the NAC by coordinating conformational changes in surrounding domains.
细胞 RNA 聚合酶(RNAP)是一种复杂的分子机器,它将催化作用与活性中心的协同构象变化结合在一起。以前的工作表明,靠近桥螺旋(BH)C 端的铰链区域的弯曲在控制催化速率方面起着关键作用。
本文提出了桥螺旋结构域氨基端部分(BH-H(N))存在额外铰链区域的新证据。BH-H(N)的纳米力学特性是高度保守的一级氨基酸序列的直接结果。预测会影响其柔韧性的突变会导致核苷酸添加循环(NAC)速率的相应变化。BH-H(N)表现出与 BH-H(C)不同的功能特性,这表明桥螺旋的构象变化通过两种独立的机制来控制 NAC。
RNAP 桥螺旋中两个不同的分子铰链的特性通过协调周围结构域的构象变化,决定了该结构域对 NAC 关键阶段的功能贡献。