Suppr超能文献

基于地标分布和特征的矩模型的局部归巢导航

Local Homing Navigation Based on the Moment Model for Landmark Distribution and Features.

作者信息

Lee Changmin, Kim DaeEun

机构信息

School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea.

出版信息

Sensors (Basel). 2017 Nov 17;17(11):2658. doi: 10.3390/s17112658.

Abstract

[-10]For local homing navigation, an agent is supposed to return home based on the surrounding environmental information. According to the snapshot model, the home snapshot and the current view are compared to determine the homing direction. In this paper, we propose a novel homing navigation method using the moment model. The suggested moment model also follows the snapshot theory to compare the home snapshot and the current view, but the moment model defines a moment of landmark inertia as the sum of the product of the feature of the landmark particle with the square of its distance. The method thus uses range values of landmarks in the surrounding view and the visual features. The center of the moment can be estimated as the reference point, which is the unique convergence point in the moment potential from any view. The homing vector can easily be extracted from the centers of the moment measured at the current position and the home location. The method effectively guides homing direction in real environments, as well as in the simulation environment. In this paper, we take a holistic approach to use all pixels in the panoramic image as landmarks and use the RGB color intensity for the visual features in the moment model in which a set of three moment functions is encoded to determine the homing vector. We also tested visual homing or the moment model with only visual features, but the suggested moment model with both the visual feature and the landmark distance shows superior performance. We demonstrate homing performance with various methods classified by the status of the feature, the distance and the coordinate alignment.

摘要

[-10]对于局部归巢导航,智能体应根据周围环境信息返回巢穴。根据快照模型,将巢穴快照与当前视图进行比较以确定归巢方向。在本文中,我们提出了一种使用矩模型的新型归巢导航方法。所提出的矩模型同样遵循快照理论来比较巢穴快照和当前视图,但矩模型将地标惯性矩定义为地标粒子特征与其距离平方的乘积之和。因此,该方法使用周围视图中地标的距离值和视觉特征。矩的中心可估计为参考点,它是从任何视图看矩势中的唯一收敛点。归巢向量可轻松从在当前位置和巢穴位置测量的矩中心提取。该方法在实际环境以及模拟环境中都能有效地引导归巢方向。在本文中,我们采用整体方法,将全景图像中的所有像素用作地标,并在矩模型中使用RGB颜色强度作为视觉特征,其中一组三个矩函数被编码以确定归巢向量。我们还仅使用视觉特征测试了视觉归巢或矩模型,但所提出的同时具有视觉特征和地标距离的矩模型表现更优。我们用按特征状态、距离和坐标对齐分类的各种方法展示了归巢性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e49/5713017/5624b7119bff/sensors-17-02658-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验