Suppr超能文献

静息态和动态静息态网络的 EEG 与 MEG 比较。

Comparison between EEG and MEG of static and dynamic resting-state networks.

机构信息

Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.

出版信息

Hum Brain Mapp. 2024 Sep;45(13):e70018. doi: 10.1002/hbm.70018.

Abstract

The characterisation of resting-state networks (RSNs) using neuroimaging techniques has significantly contributed to our understanding of the organisation of brain activity. Prior work has demonstrated the electrophysiological basis of RSNs and their dynamic nature, revealing transient activations of brain networks with millisecond timescales. While previous research has confirmed the comparability of RSNs identified by electroencephalography (EEG) to those identified by magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), most studies have utilised static analysis techniques, ignoring the dynamic nature of brain activity. Often, these studies use high-density EEG systems, which limit their applicability in clinical settings. Addressing these gaps, our research studies RSNs using medium-density EEG systems (61 sensors), comparing both static and dynamic brain network features to those obtained from a high-density MEG system (306 sensors). We assess the qualitative and quantitative comparability of EEG-derived RSNs to those from MEG, including their ability to capture age-related effects, and explore the reproducibility of dynamic RSNs within and across the modalities. Our findings suggest that both MEG and EEG offer comparable static and dynamic network descriptions, albeit with MEG offering some increased sensitivity and reproducibility. Such RSNs and their comparability across the two modalities remained consistent qualitatively but not quantitatively when the data were reconstructed without subject-specific structural MRI images.

摘要

使用神经影像学技术对静息态网络 (RSN) 进行特征描述,极大地促进了我们对大脑活动组织方式的理解。先前的工作已经证明了 RSN 的电生理基础及其动态性质,揭示了具有毫秒时间尺度的大脑网络的瞬时激活。虽然先前的研究已经证实了脑电图 (EEG) 识别的 RSN 与脑磁图 (MEG) 和功能磁共振成像 (fMRI) 识别的 RSN 具有可比性,但大多数研究都使用了静态分析技术,忽略了大脑活动的动态性质。通常,这些研究使用高密度 EEG 系统,这限制了它们在临床环境中的适用性。为了解决这些差距,我们使用中密度 EEG 系统 (61 个传感器) 研究 RSN,比较静态和动态脑网络特征与高密度 MEG 系统 (306 个传感器) 获得的特征。我们评估了 EEG 衍生的 RSN 与 MEG 的定性和定量可比性,包括它们捕捉年龄相关效应的能力,并探索了模态内和模态间动态 RSN 的可重复性。我们的发现表明,MEG 和 EEG 都提供了可比的静态和动态网络描述,尽管 MEG 提供了一些更高的灵敏度和可重复性。当不使用特定于主体的结构 MRI 图像重建数据时,这种 RSN 及其在两种模式之间的可比性在定性上是一致的,但在定量上则不一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6068/11372824/41196e30ca78/HBM-45-e70018-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验