Suppr超能文献

脑肿瘤窗模型:一种联合颅窗和植入性神经胶质瘤模型,用于评估术中对比剂。

The brain tumor window model: a combined cranial window and implanted glioma model for evaluating intraoperative contrast agents.

机构信息

Department of Neurosurgery, University of Michigan Health System, Ann Arbor, Michigan, USA.

出版信息

Neurosurgery. 2010 Apr;66(4):736-43. doi: 10.1227/01.NEU.0000367631.02903.50.

Abstract

OBJECTIVE

Optical contrast agents for brain tumor delineation have been previously evaluated in ex vivo specimens from animals with implanted gliomas and may not reflect the true visual parameters encountered during surgery. This study describes a novel model system designed to evaluate optical contrast agents for tumor delineation in vivo.

METHODS

Biparietal craniectomies were performed on 8-week-old Sprague-Dawley rats. 9L glioma cells were injected intraparenchymally. A cover slip was bonded to the cranial defect with cyanoacrylate glue. When the tumor radius reached 1 mm, Coomassie Blue was administered intravenously while the appearance of the cortical surface was recorded. Computerized image analysis of the red/green/blue color components was used to quantify visible differences between tumor and nonneoplastic tissue and to compare delineation in the brain tumor window (BTW) model with the conventional 9L glioma model.

RESULTS

The tumor margin in the BTW model was poorly defined before contrast administration but readily apparent after contrast administration. Based on red component intensity, tumor delineation improved 4-fold at 50 minutes after contrast administration in the BTW model (P < .002). The conventional 9L glioma model overestimated the degree of delineation compared with the BTW model at the same dose of Coomassie Blue (P < .03).

CONCLUSION

Window placement overlying an implanted glioma is technically possible and well tolerated in the rat. The BTW model is a valid system for evaluating optical contrast agents designed to delineate brain tumor margins. To our knowledge, we have described the first in vivo model system for evaluating optical contrast agents for tumor delineation.

摘要

目的

先前已在植入胶质瘤的动物的离体标本中评估了用于脑肿瘤描绘的光学对比剂,但它们可能无法反映手术过程中实际遇到的真实视觉参数。本研究描述了一种新的模型系统,旨在体内评估用于肿瘤描绘的光学对比剂。

方法

在 8 周龄的 Sprague-Dawley 大鼠上进行顶骨双瓣开颅术。9L 神经胶质瘤细胞被脑室内注射。用氰基丙烯酸酯胶将盖玻片粘接到颅骨缺损上。当肿瘤半径达到 1 毫米时,静脉内给予考马斯亮蓝,并记录皮质表面的外观。使用红/绿/蓝颜色成分的计算机图像分析来量化肿瘤与非肿瘤组织之间的可见差异,并比较脑肿瘤窗(BTW)模型中的描绘与常规 9L 神经胶质瘤模型。

结果

在给予对比剂之前,BTW 模型中的肿瘤边界定义不佳,但在给予对比剂后很快变得明显。基于红色成分强度,在 BTW 模型中,对比剂给药后 50 分钟时肿瘤描绘改善了 4 倍(P <.002)。与 BTW 模型相比,相同剂量的考马斯亮蓝在常规 9L 神经胶质瘤模型中高估了描绘程度(P <.03)。

结论

在大鼠中,在植入的神经胶质瘤上方放置窗口在技术上是可行的,并且可以很好地耐受。BTW 模型是一种用于评估旨在描绘脑肿瘤边界的光学对比剂的有效系统。据我们所知,我们已经描述了用于肿瘤描绘的光学对比剂评估的第一个体内模型系统。

相似文献

4
Molecular susceptibility weighted imaging of the glioma rim in a mouse model.
J Neurosci Methods. 2014 Apr 15;226:132-138. doi: 10.1016/j.jneumeth.2014.01.034. Epub 2014 Feb 10.
5
Surface-Enhanced Resonance Raman Scattering-Guided Brain Tumor Surgery Showing Prognostic Benefit in Rat Models.
ACS Appl Mater Interfaces. 2019 May 1;11(17):15241-15250. doi: 10.1021/acsami.9b00227. Epub 2019 Apr 17.
9
MRI contrast enhancement by Gd-DTPA-monoclonal antibody in 9L glioma rats.
Acta Neurochir Suppl (Wien). 1994;60:356-8. doi: 10.1007/978-3-7091-9334-1_96.
10
Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model.
Clin Exp Metastasis. 2005;22(3):225-36. doi: 10.1007/s10585-005-7889-x.

引用本文的文献

1
Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing.
Adv Sci (Weinh). 2023 Mar;10(8):e2202051. doi: 10.1002/advs.202202051. Epub 2023 Jan 22.
3
Photoacoustic imaging as a highly efficient and precise imaging strategy for the evaluation of brain diseases.
Quant Imaging Med Surg. 2021 May;11(5):2169-2186. doi: 10.21037/qims-20-845.
4
Through the looking glass: A review of cranial window technology for optical access to the brain.
J Neurosci Methods. 2021 Apr 15;354:109100. doi: 10.1016/j.jneumeth.2021.109100. Epub 2021 Feb 15.
5
Gold Nanomaterials for Imaging-Guided Near-Infrared Cancer Therapy.
Front Bioeng Biotechnol. 2019 Dec 5;7:398. doi: 10.3389/fbioe.2019.00398. eCollection 2019.
6
Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography.
Nat Commun. 2019 Sep 19;10(1):4277. doi: 10.1038/s41467-019-12178-6.
7
Targeted Blue Nanoparticles as Photoacoustic Contrast Agent for Brain Tumor Delineation.
Nano Res. 2011 Nov;4(11):1163-1173. doi: 10.1007/s12274-011-0166-1. Epub 2011 Sep 26.
8
Dedifferentiation of Glioma Cells to Glioma Stem-like Cells By Therapeutic Stress-induced HIF Signaling in the Recurrent GBM Model.
Mol Cancer Ther. 2016 Dec;15(12):3064-3076. doi: 10.1158/1535-7163.MCT-15-0675. Epub 2016 Oct 7.
9
Evans blue nanocarriers visually demarcate margins of invasive gliomas.
Drug Deliv Transl Res. 2015 Apr;5(2):116-24. doi: 10.1007/s13346-013-0139-x.
10
Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner.
ACS Nano. 2014 Oct 28;8(10):9755-66. doi: 10.1021/nn503948b. Epub 2014 Aug 22.

本文引用的文献

1
Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy.
Clin Pharmacol Ther. 2009 May;85(5):531-4. doi: 10.1038/clpt.2008.296. Epub 2009 Feb 25.
2
Intraoperative fluorescence staining of malignant brain tumors using 5-aminofluorescein-labeled albumin.
Neurosurgery. 2009 Mar;64(3 Suppl):ons53-60; discussion ons60-1. doi: 10.1227/01.NEU.0000335787.17029.67.
3
The clinical use of fluorescein in neurosurgery; the localization of brain tumors.
J Neurosurg. 1948 Jul;5(4):392-8. doi: 10.3171/jns.1948.5.4.0392.
4
Different effects of KCa and KATP agonists on brain tumor permeability between syngeneic and allogeneic rat models.
Brain Res. 2008 Aug 28;1227:198-206. doi: 10.1016/j.brainres.2008.06.046. Epub 2008 Jun 21.
5
Glioma extent of resection and its impact on patient outcome.
Neurosurgery. 2008 Apr;62(4):753-64; discussion 264-6. doi: 10.1227/01.neu.0000318159.21731.cf.
6
Fluorescein as an Agent in the Differentiation of Normal and Malignant Tissues.
Science. 1947 Aug 8;106(2745):130-1. doi: 10.1126/science.106.2745.130-a.
7
Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci.
Cancer Res. 2007 Jul 15;67(14):6882-8. doi: 10.1158/0008-5472.CAN-06-3948.
8
Vascular targeted nanoparticles for imaging and treatment of brain tumors.
Clin Cancer Res. 2006 Nov 15;12(22):6677-86. doi: 10.1158/1078-0432.CCR-06-0946.
10
Bromophenol blue staining of tumors in a rat glioma model.
Neurosurgery. 2005 Nov;57(5):1041-7; discussion 1041-7. doi: 10.1227/01.neu.0000180036.42193.f6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验