Department of Pathology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA.
Biochem Biophys Res Commun. 2010 Apr 23;395(1):17-24. doi: 10.1016/j.bbrc.2010.03.093. Epub 2010 Mar 20.
Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 microM concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTPgammaS or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.
花生四烯酸衍生的内源性亲电体 15d-PGJ2 因其通过巯基修饰靶蛋白中的半胱氨酸残基发挥强大的抗增殖和抗炎作用而受到近年来的广泛关注。在这里,我们表明 15d-PGJ2 在 1μM 浓度下通过直接结合到线粒体分裂蛋白 Drp1 并部分抑制其 GTPase 活性,将正常线粒体转化为大的拉长和相互连接的线粒体。15d-PGJ2 诱导的线粒体伸长伴随着 Drp1 通过可能的分子间相互作用组装成大的寡聚复合物的增加。当 Drp1 与不可裂解的 GTP 类似物 GTPγS 孵育或通过使 Drp1 的 GTPase 活性失活的突变(K38A)时,Drp1 的 GTPase 活性降低在大寡聚复合物形成中的作用是明显的。在 GTPase 效应结构域中半胱氨酸残基(Cys644)的突变(报告的亲电修饰的靶标)为丙氨酸模拟 K38A 突变诱导的 Drp1 寡聚化和线粒体伸长,表明 GED 中半胱氨酸在调节 GTPase 活性和线粒体形态中的重要性。有趣的是,用 15d-PGJ2 处理 K38A 和 C644A 突变体导致两种突变 Drp1 的超寡聚化,表明 15d-PGJ2 可能通过对中间结构域半胱氨酸残基的共价修饰进一步稳定由 GTPase 活性丧失引起的 Drp1 寡聚物。本研究首次记录了前列腺素对线粒体分裂活性的调节,这将为理解氧化应激、炎症和退化过程中亲电物积累的病理和生理后果提供线索。