Suppr超能文献

通过三维肽分级和串联质谱对人类唾液微生物组进行的宏蛋白质组学分析。

A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry.

机构信息

Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA.

出版信息

Mol Oral Microbiol. 2010 Feb;25(1):38-49. doi: 10.1111/j.2041-1014.2009.00558.x.

Abstract

Metagenomics uses gene expression patterns to understand the taxonomy and metabolic activities of microbial communities. Metaproteomics applies the same approach to community proteomes. Previously, we used a novel three-dimensional peptide separation method to identify over 2000 salivary proteins. This study used those data to carry out the first metaproteomic analysis of the human salivary microbiota. The metagenomic software MEGAN generated a phylogenetic tree, which was checked against the Human Oral Microbiome Database (HOMD). Pathway analyses were performed with the Clusters of Orthologous Groups and MetaCyc databases. Thirty-seven per cent of the peptides were identifiable only at the level of cellular organisms or bacteria. The rest were distributed among five bacterial phyla (61%), archea (0.5%), and viruses (0.8%); 29% were assignable at the genus level, and most belonged to Streptococcus (17%). Eleven per cent of all peptides could be assigned to species. Most taxa were represented in HOMD and they included well-known species such as periodontal pathogens. However, there also were 'exotic' species including aphid endosymbionts; plant, water, and soil bacteria; extremophiles; and archea. The pathway analysis indicated that peptides were linked to translation (37%), followed by glycolysis (19%), amino acid metabolism (8%), and energy production (8%). The taxonomic structure of the salivary metaproteome is very diverse but is dominated by streptococci. 'Exotic' species may actually represent close relatives that have not yet been sequenced. Salivary microbes appear to be actively engaged in protein synthesis, and the pathway analysis is consistent with the metabolism of salivary glycoproteins.

摘要

宏基因组学利用基因表达模式来了解微生物群落的分类和代谢活动。宏蛋白质组学将相同的方法应用于群落蛋白质组学。之前,我们使用了一种新的三维肽分离方法来鉴定超过 2000 种唾液蛋白。本研究使用这些数据对人类唾液微生物群进行了首次宏蛋白质组学分析。宏基因组学软件 MEGAN 生成了一个系统发育树,该树与人类口腔微生物组数据库(HOMD)进行了核对。使用同源基因簇和 MetaCyc 数据库进行了途径分析。37%的肽只能在细胞生物或细菌水平上识别。其余的肽分布在五个细菌门(61%)、古菌(0.5%)和病毒(0.8%)中;29%可在属水平上分配,大多数属于链球菌(17%)。11%的所有肽都可以分配到种。大多数类群在 HOMD 中都有代表,其中包括牙周病原体等知名物种。然而,也有“外来”物种,包括蚜虫内共生体、植物、水和土壤细菌、极端微生物和古菌。途径分析表明,肽与翻译(37%)相关,其次是糖酵解(19%)、氨基酸代谢(8%)和能量产生(8%)。唾液宏蛋白质组的分类结构非常多样化,但以链球菌为主。“外来”物种实际上可能代表尚未测序的近亲。唾液微生物似乎正在积极参与蛋白质合成,途径分析与唾液糖蛋白的代谢一致。

相似文献

2
Deep metaproteomic analysis of human salivary supernatant.
Proteomics. 2012 Apr;12(7):992-1001. doi: 10.1002/pmic.201100503.
3
MetaNovo: An open-source pipeline for probabilistic peptide discovery in complex metaproteomic datasets.
PLoS Comput Biol. 2023 Jun 16;19(6):e1011163. doi: 10.1371/journal.pcbi.1011163. eCollection 2023 Jun.
5
Evaluating the impact of different sequence databases on metaproteome analysis: insights from a lab-assembled microbial mixture.
PLoS One. 2013 Dec 9;8(12):e82981. doi: 10.1371/journal.pone.0082981. eCollection 2013.
6
Estimating relative biomasses of organisms in microbiota using "phylopeptidomics".
Microbiome. 2020 Mar 6;8(1):30. doi: 10.1186/s40168-020-00797-x.
7
An Alignment-Free "Metapeptide" Strategy for Metaproteomic Characterization of Microbiome Samples Using Shotgun Metagenomic Sequencing.
J Proteome Res. 2016 Aug 5;15(8):2697-705. doi: 10.1021/acs.jproteome.6b00239. Epub 2016 Jul 19.
9
Optimizing metaproteomics database construction: lessons from a study of the vaginal microbiome.
mSystems. 2023 Aug 31;8(4):e0067822. doi: 10.1128/msystems.00678-22. Epub 2023 Jun 23.
10
MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.
Microbiome. 2016 Jun 24;4(1):31. doi: 10.1186/s40168-016-0176-z.

引用本文的文献

1
Proteomic snapshot of saliva samples predicts new pathways implicated in SARS-CoV-2 pathogenesis.
Clin Proteomics. 2024 May 22;21(1):37. doi: 10.1186/s12014-024-09482-9.
2
Impact of different oral treatments on the composition of the supragingival plaque microbiome.
J Oral Microbiol. 2022 Oct 31;14(1):2138251. doi: 10.1080/20002297.2022.2138251. eCollection 2022.
3
In-Depth Metaproteomics Analysis of Oral Microbiome for Lung Cancer.
Research (Wash D C). 2022 Oct 13;2022:9781578. doi: 10.34133/2022/9781578. eCollection 2022.
6
Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era.
Front Cell Infect Microbiol. 2022 Jun 17;12:887907. doi: 10.3389/fcimb.2022.887907. eCollection 2022.
9
[Research progress on carbohydrate active enzymes of human microbiome].
Hua Xi Kou Qiang Yi Xue Za Zhi. 2019 Dec 1;37(6):666-670. doi: 10.7518/hxkq.2019.06.017.
10
Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals.
J Oral Microbiol. 2019 Aug 26;11(1):1654786. doi: 10.1080/20002297.2019.1654786. eCollection 2019.

本文引用的文献

2
Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing.
PLoS Genet. 2008 Nov;4(11):e1000255. doi: 10.1371/journal.pgen.1000255. Epub 2008 Nov 21.
4
Pyrosequencing analysis of the oral microflora of healthy adults.
J Dent Res. 2008 Nov;87(11):1016-20. doi: 10.1177/154405910808701104.
8
Metaproteomics provides functional insight into activated sludge wastewater treatment.
PLoS One. 2008 Mar 12;3(3):e1778. doi: 10.1371/journal.pone.0001778.
9
Comparative bacterial proteomics: analysis of the core genome concept.
PLoS One. 2008 Feb 6;3(2):e1542. doi: 10.1371/journal.pone.0001542.
10
Bacterial flora-typing with targeted, chip-based Pyrosequencing.
BMC Microbiol. 2007 Nov 30;7:108. doi: 10.1186/1471-2180-7-108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验