Suppr超能文献

使用谷歌可教机器进行乳腺癌组织病理学图像分类的初步研究:一种无代码人工智能方法。

A Pilot Study of Breast Cancer Histopathological Image Classification Using Google Teachable Machine: A No-Code Artificial Intelligence Approach.

作者信息

Singla Namit, Ghosh Abhra, Dhingra Manthan, Pal Upajna, Dasgupta Arkajit, Ghosh Arpan, Kuc Tae-Yong, Singla Krisha

机构信息

Medicine, Dayanand Medical College and Hospital, Ludhiana, IND.

Biochemistry, Mata Gujri Memorial Medical College and Lions Seva Kendra Hospital, Kishanganj, IND.

出版信息

Cureus. 2025 Jul 4;17(7):e87301. doi: 10.7759/cureus.87301. eCollection 2025 Jul.

Abstract

Introduction Breast cancer remains a major global cause of cancer-related mortality, where histopathology serves as the diagnostic cornerstone. However, inter-observer variability and increasing diagnostic workload necessitate innovative solutions. This pilot study assesses the feasibility and diagnostic performance of a no-code, browser-based artificial intelligence platform, Google Teachable Machine (GTM; Google Creative Lab, New York, NY, USA), for classifying breast histopathology images into clinically relevant categories. Methods A total of 380 hematoxylin and eosin-stained images, equally distributed among four diagnostic categories (normal, benign, in situ carcinoma, invasive carcinoma), were sourced from an open-access repository. The GTM model was trained with 85% of the data (50 epochs; batch size 16; learning rate 0.0001), and externally validated on 39 independent images. Performance metrics included accuracy, precision, recall, and F1-score. Results The model achieved an internal validation accuracy of 88.3%, with per-class accuracies of 87% for Normal, 93% for Benign, 87% for In Situ Carcinoma, and 87% for Invasive Carcinoma. On external validation using 39 independent images, the model demonstrated an overall accuracy of 76.9%, with a macro-averaged F1-score of 0.77 and a weighted-averaged F1-score of 0.77. Class-wise external performance metrics included precision, recall, and F1-scores of 1.00, 0.70, and 0.82 for Normal; 0.67, 0.80, and 0.73 for Benign; 0.67, 1.00, and 0.80 for In Situ Carcinoma; and 1.00, 0.56, and 0.71 for Invasive Carcinoma, respectively. The model exhibited high precision across most classes but demonstrated reduced recall for invasive carcinoma, reflecting challenges in distinguishing invasive from non-invasive lesions within the constraints of a limited dataset. Conclusion GTM demonstrated preliminary feasibility for multi-class breast histopathology classification using small datasets without coding expertise. While performance was encouraging, particularly for normal and in situ categories, limitations such as reduced invasive carcinoma sensitivity and small sample size underscore the need for larger datasets, advanced architectures, and explainable AI methods to enhance clinical applicability.

摘要

引言

乳腺癌仍然是全球癌症相关死亡的主要原因,组织病理学是诊断的基石。然而,观察者之间的差异以及不断增加的诊断工作量需要创新的解决方案。本试点研究评估了一个无需编码、基于浏览器的人工智能平台——谷歌可教机器(GTM;谷歌创意实验室,美国纽约州纽约市)将乳腺组织病理学图像分类为临床相关类别的可行性和诊断性能。

方法

总共从一个开放获取的存储库中获取了380张苏木精和伊红染色的图像,平均分布在四个诊断类别(正常、良性、原位癌、浸润性癌)中。GTM模型使用85%的数据进行训练(50个轮次;批量大小16;学习率0.0001),并在39张独立图像上进行外部验证。性能指标包括准确率、精确率、召回率和F1分数。

结果

该模型的内部验证准确率为88.3%,各类别的准确率分别为:正常87%、良性93%、原位癌87%、浸润性癌87%。在使用39张独立图像进行的外部验证中,该模型的总体准确率为76.9%,宏观平均F1分数为0.77,加权平均F1分数为0.77。各分类的外部性能指标包括:正常的精确率、召回率和F1分数分别为1.00、0.70和0.82;良性的分别为0.67、0.80和0.73;原位癌的分别为0.67、1.00和0.80;浸润性癌的分别为1.00、0.56和0.71。该模型在大多数类别中表现出较高的精确率,但浸润性癌的召回率较低,这反映了在有限数据集的限制下区分浸润性和非浸润性病变的挑战。

结论

GTM展示了在无需编码专业知识的情况下使用小数据集进行多类别乳腺组织病理学分类的初步可行性。虽然性能令人鼓舞,特别是对于正常和原位类别,但诸如浸润性癌敏感性降低和样本量小等局限性突出了需要更大的数据集、先进的架构和可解释的人工智能方法来提高临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf3/12318882/014c2a3f46a4/cureus-0017-00000087301-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验