Suppr超能文献

利用 SHIRPA 方案预测鼠类疟疾模型中脑型疟疾的算法。

Algorithms to predict cerebral malaria in murine models using the SHIRPA protocol.

机构信息

Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, FIOCRUZ, Brasil, 4365 - Manguinhos, Cep: 21045-900 - Rio de Janeiro - RJ, Brasil.

出版信息

Malar J. 2010 Mar 24;9:85. doi: 10.1186/1475-2875-9-85.

Abstract

BACKGROUND

Plasmodium berghei ANKA infection in C57Bl/6 mice induces cerebral malaria (CM), which reproduces, to a large extent, the pathological features of human CM. However, experimental CM incidence is variable (50-100%) and the period of incidence may present a range as wide as 6-12 days post-infection. The poor predictability of which and when infected mice will develop CM can make it difficult to determine the causal relationship of early pathological changes and outcome. With the purpose of contributing to solving these problems, algorithms for CM prediction were built.

METHODS

Seventy-eight P. berghei-infected mice were daily evaluated using the primary SHIRPA protocol. Mice were classified as CM+ or CM- according to development of neurological signs on days 6-12 post-infection. Logistic regression was used to build predictive models for CM based on the results of SHIRPA tests and parasitaemia.

RESULTS

The overall CM incidence was 54% occurring on days 6-10. Some algorithms had a very good performance in predicting CM, with the area under the receiver operator characteristic ((au)ROC) curve > or = 80% and positive predictive values (PV+) > or = 95, and correctly predicted time of death due to CM between 24 and 72 hours before development of the neurological syndrome ((au)ROC = 77-93%; PV+ = 100% using high cut off values). Inclusion of parasitaemia data slightly improved algorithm performance.

CONCLUSION

These algorithms work with data from a simple, inexpensive, reproducible and fast protocol. Most importantly, they can predict CM development very early, estimate time of death, and might be a valuable tool for research using CM murine models.

摘要

背景

伯氏疟原虫 ANKA 感染 C57Bl/6 小鼠可诱导脑型疟疾(CM),其在很大程度上再现了人类 CM 的病理特征。然而,实验性 CM 的发病率存在差异(50-100%),发病时间可能长达感染后 6-12 天。由于难以预测哪些以及何时感染的小鼠会发生 CM,这使得确定早期病理变化与结果之间的因果关系变得困难。为了解决这些问题,构建了 CM 预测算法。

方法

78 只感染伯氏疟原虫的小鼠每天使用初级 SHIRPA 方案进行评估。根据感染后第 6-12 天的神经症状发展情况,将小鼠分为 CM+或 CM-。使用逻辑回归基于 SHIRPA 测试和寄生虫血症的结果为 CM 构建预测模型。

结果

CM 的总发病率为 54%,发生在第 6-10 天。一些算法在预测 CM 方面表现出非常好的性能,接收器操作特征曲线下的面积(auROC)>80%,阳性预测值(PV+)>95%,并且可以在神经综合征发展前 24-72 小时准确预测因 CM 导致的死亡时间(auROC = 77-93%;PV+ = 100%,使用高截断值)。包含寄生虫血症数据略微提高了算法性能。

结论

这些算法可使用简单、廉价、可重复和快速的方案生成的数据工作。最重要的是,它们可以很早地预测 CM 的发展,估计死亡时间,并且可能是 CM 鼠模型研究的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6492/2850361/a27184aa8744/1475-2875-9-85-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验