Suppr超能文献

用于图像引导外周支气管镜的健壮 3D 气道树分割。

Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy.

机构信息

Google, Inc., Pittsburgh, PA 15213, USA.

出版信息

IEEE Trans Med Imaging. 2010 Apr;29(4):982-97. doi: 10.1109/TMI.2009.2035813. Epub 2010 Mar 22.

Abstract

A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robust method that draws upon both local and global information. The method begins with a conservative segmentation of the major airways. Follow-on stages then exhaustively search for additional candidate airway locations. Finally, a graph-based optimization method counterbalances both the benefit and cost of retaining candidate airway locations for the final segmentation. Results demonstrate that the proposed method typically extracts 2-3 more generations of airways than several other methods, and that the extracted airway trees enable image-guided bronchoscopy deeper into the human lung periphery than past studies.

摘要

在外周支气管镜规划中,一项重要任务是从 3D 多排 CT 胸部扫描中分割气道树。不幸的是,现有的方法通常不能充分提取规划手术所需的必要外周气道。我们提出了一种利用局部和全局信息的稳健方法。该方法首先对主要气道进行保守分割。后续阶段然后彻底搜索其他候选气道位置。最后,基于图的优化方法平衡了保留候选气道位置的最终分割的收益和成本。结果表明,与其他几种方法相比,该方法通常可以提取 2-3 代更多的气道,并且提取的气道树使得基于图像的支气管镜能够比以往的研究更深入地进入人类肺部外周。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验