Department of Mathematics, Duke University, Durham, North Carolina, USA.
Am J Physiol Renal Physiol. 2010 Jun;298(6):F1369-83. doi: 10.1152/ajprenal.00572.2009. Epub 2010 Mar 24.
We used a mathematical model of O(2) transport and the urine concentrating mechanism of the outer medulla of the rat kidney to study the effects of blood pH and medullary blood flow on O(2) availability and Na(+) reabsorption. The model predicts that in vivo paracellular Na(+) fluxes across medullary thick ascending limbs (mTALs) are small relative to transcellular Na(+) fluxes and that paracellular fluxes favor Na(+) reabsorption from the lumen along most of the mTAL segments. In addition, model results suggest that blood pH has a significant impact on O(2) transport and Na(+) reabsorption owing to the Bohr effect, according to which a lower pH reduces the binding affinity of hemoglobin for O(2). Thus our model predicts that the presumed greater acidity of blood in the interbundle regions, where mTALs are located, relative to that in the vascular bundles, facilitates the delivery of O(2) to support the high metabolic requirements of the mTALs and raises the concentrating capability of the outer medulla. Model results also suggest that increases in vascular and tubular flow rates result in disproportional, smaller increases in active O(2) consumption and mTAL active Na(+) transport, despite the higher delivery of O(2) and Na(+). That is, at a sufficiently high medullary O(2) supply, O(2) demand in the outer medulla does not adjust precisely to changes in O(2) delivery.
我们使用 O(2) 转运的数学模型和大鼠肾脏外髓质的尿液浓缩机制来研究血液 pH 值和髓质血流量对 O(2) 供应和 Na(+) 重吸收的影响。该模型预测,在体内,相对于跨细胞 Na(+) 通量,穿过髓质厚升支(mTAL)的细胞旁 Na(+) 通量较小,并且细胞旁通量有利于从管腔沿着大多数 mTAL 段进行 Na(+) 重吸收。此外,模型结果表明,由于波尔效应,血液 pH 值对 O(2) 转运和 Na(+) 重吸收有重大影响,根据该效应,较低的 pH 值降低了血红蛋白对 O(2) 的结合亲和力。因此,我们的模型预测,与血管束相比,mTAL 所在的束间区的血液可能具有更大的酸度,这有助于向 mTAL 提供 O(2) 以支持其高代谢需求,并提高外髓质的浓缩能力。模型结果还表明,尽管 O(2) 和 Na(+) 的输送增加,但血管和管状流量的增加导致活性 O(2) 消耗和 mTAL 主动 Na(+) 转运不成比例地、较小地增加。也就是说,在外髓质有足够高的 O(2) 供应的情况下,O(2) 在外髓质的需求不会精确地根据 O(2) 输送的变化而调整。