Suppr超能文献

pH 值和髓质血流量对大鼠外髓氧运输和钠重吸收的影响。

Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla.

机构信息

Department of Mathematics, Duke University, Durham, North Carolina, USA.

出版信息

Am J Physiol Renal Physiol. 2010 Jun;298(6):F1369-83. doi: 10.1152/ajprenal.00572.2009. Epub 2010 Mar 24.

Abstract

We used a mathematical model of O(2) transport and the urine concentrating mechanism of the outer medulla of the rat kidney to study the effects of blood pH and medullary blood flow on O(2) availability and Na(+) reabsorption. The model predicts that in vivo paracellular Na(+) fluxes across medullary thick ascending limbs (mTALs) are small relative to transcellular Na(+) fluxes and that paracellular fluxes favor Na(+) reabsorption from the lumen along most of the mTAL segments. In addition, model results suggest that blood pH has a significant impact on O(2) transport and Na(+) reabsorption owing to the Bohr effect, according to which a lower pH reduces the binding affinity of hemoglobin for O(2). Thus our model predicts that the presumed greater acidity of blood in the interbundle regions, where mTALs are located, relative to that in the vascular bundles, facilitates the delivery of O(2) to support the high metabolic requirements of the mTALs and raises the concentrating capability of the outer medulla. Model results also suggest that increases in vascular and tubular flow rates result in disproportional, smaller increases in active O(2) consumption and mTAL active Na(+) transport, despite the higher delivery of O(2) and Na(+). That is, at a sufficiently high medullary O(2) supply, O(2) demand in the outer medulla does not adjust precisely to changes in O(2) delivery.

摘要

我们使用 O(2) 转运的数学模型和大鼠肾脏外髓质的尿液浓缩机制来研究血液 pH 值和髓质血流量对 O(2) 供应和 Na(+) 重吸收的影响。该模型预测,在体内,相对于跨细胞 Na(+) 通量,穿过髓质厚升支(mTAL)的细胞旁 Na(+) 通量较小,并且细胞旁通量有利于从管腔沿着大多数 mTAL 段进行 Na(+) 重吸收。此外,模型结果表明,由于波尔效应,血液 pH 值对 O(2) 转运和 Na(+) 重吸收有重大影响,根据该效应,较低的 pH 值降低了血红蛋白对 O(2) 的结合亲和力。因此,我们的模型预测,与血管束相比,mTAL 所在的束间区的血液可能具有更大的酸度,这有助于向 mTAL 提供 O(2) 以支持其高代谢需求,并提高外髓质的浓缩能力。模型结果还表明,尽管 O(2) 和 Na(+) 的输送增加,但血管和管状流量的增加导致活性 O(2) 消耗和 mTAL 主动 Na(+) 转运不成比例地、较小地增加。也就是说,在外髓质有足够高的 O(2) 供应的情况下,O(2) 在外髓质的需求不会精确地根据 O(2) 输送的变化而调整。

相似文献

1
Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla.
Am J Physiol Renal Physiol. 2010 Jun;298(6):F1369-83. doi: 10.1152/ajprenal.00572.2009. Epub 2010 Mar 24.
2
A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F537-48. doi: 10.1152/ajprenal.90497.2008. Epub 2009 Apr 29.
3
A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F517-36. doi: 10.1152/ajprenal.90496.2008. Epub 2009 Apr 29.
4
Impact of renal medullary three-dimensional architecture on oxygen transport.
Am J Physiol Renal Physiol. 2014 Aug 1;307(3):F263-72. doi: 10.1152/ajprenal.00149.2014. Epub 2014 Jun 4.
5
Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation.
Am J Physiol Renal Physiol. 2012 Oct;303(7):F907-17. doi: 10.1152/ajprenal.00055.2012. Epub 2012 Jul 11.
6
Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide.
Am J Physiol Renal Physiol. 2011 Nov;301(5):F979-96. doi: 10.1152/ajprenal.00096.2011. Epub 2011 Aug 17.
7
Body mass-specific Na-K-ATPase activity in the medullary thick ascending limb: implications for species-dependent urine concentrating mechanisms.
Am J Physiol Regul Integr Comp Physiol. 2018 Apr 1;314(4):R563-R573. doi: 10.1152/ajpregu.00289.2017. Epub 2018 Jan 3.
8
Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
Am J Physiol Renal Physiol. 2015 May 1;308(9):F967-80. doi: 10.1152/ajprenal.00600.2014. Epub 2015 Jan 28.
10
Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk.
Am J Physiol Renal Physiol. 2010 Sep;299(3):F634-47. doi: 10.1152/ajprenal.00681.2009. Epub 2010 Jun 2.

引用本文的文献

1
Quantifying retinal oxygenation and metabolism by phosphorescence lifetime imaging.
Exp Eye Res. 2025 Aug;257:110422. doi: 10.1016/j.exer.2025.110422. Epub 2025 May 15.
3
Sex and species differences in epithelial transport in rat and mouse kidneys: Modeling and analysis.
Front Physiol. 2022 Sep 29;13:991705. doi: 10.3389/fphys.2022.991705. eCollection 2022.
4
Sex-Specific Computational Models of Kidney Function in Patients With Diabetes.
Front Physiol. 2022 Jan 26;13:741121. doi: 10.3389/fphys.2022.741121. eCollection 2022.
5
The mixed blessing of AMPK signaling in Cancer treatments.
BMC Cancer. 2022 Jan 25;22(1):105. doi: 10.1186/s12885-022-09211-1.
6
Sex differences in solute and water handling in the human kidney: Modeling and functional implications.
iScience. 2021 May 29;24(6):102667. doi: 10.1016/j.isci.2021.102667. eCollection 2021 Jun 25.
7
A Computational Model of Kidney Function in a Patient with Diabetes.
Int J Mol Sci. 2021 May 29;22(11):5819. doi: 10.3390/ijms22115819.
8
Sex differences in solute transport along the nephrons: effects of Na transport inhibition.
Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F487-F505. doi: 10.1152/ajprenal.00240.2020. Epub 2020 Aug 3.
9
A model of mitochondrial O consumption and ATP generation in rat proximal tubule cells.
Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F248-F259. doi: 10.1152/ajprenal.00330.2019. Epub 2019 Dec 2.
10
Mammalian urine concentration: a review of renal medullary architecture and membrane transporters.
J Comp Physiol B. 2018 Nov;188(6):899-918. doi: 10.1007/s00360-018-1164-3. Epub 2018 May 24.

本文引用的文献

1
A mathematical model of rat ascending Henle limb. II. Epithelial function.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F525-42. doi: 10.1152/ajprenal.00231.2009. Epub 2009 Nov 18.
2
A mathematical model of rat ascending Henle limb. III. Tubular function.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F543-56. doi: 10.1152/ajprenal.00232.2009. Epub 2009 Nov 18.
3
A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F517-36. doi: 10.1152/ajprenal.90496.2008. Epub 2009 Apr 29.
4
A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F537-48. doi: 10.1152/ajprenal.90497.2008. Epub 2009 Apr 29.
5
Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis.
Am J Physiol Renal Physiol. 2008 Nov;295(5):F1259-70. doi: 10.1152/ajprenal.90230.2008. Epub 2008 Jun 11.
6
Intrarenal oxygenation in chronic renal failure.
Clin Exp Pharmacol Physiol. 2006 Oct;33(10):989-96. doi: 10.1111/j.1440-1681.2006.04476.x.
7
Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury.
Clin Exp Pharmacol Physiol. 2006 Oct;33(10):980-8. doi: 10.1111/j.1440-1681.2006.04472.x.
9
Three-dimensional architecture of inner medullary vasa recta.
Am J Physiol Renal Physiol. 2006 Jun;290(6):F1355-66. doi: 10.1152/ajprenal.00481.2005. Epub 2005 Dec 27.
10
A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1346-66. doi: 10.1152/ajprenal.00346.2003. Epub 2005 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验