Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA.
Am J Physiol Renal Physiol. 2010 Sep;299(3):F634-47. doi: 10.1152/ajprenal.00681.2009. Epub 2010 Jun 2.
In a companion study (Edwards A and Layton AT. Am J Physiol Renal Physiol. doi:10.1152/ajprenal.00680.2009), we developed a mathematical model of nitric oxide (NO), superoxide (O(2)(-)), and total peroxynitrite (ONOO) transport in mid-outer stripe and mid-inner stripe cross sections of the rat outer medulla (OM). We examined how the three-dimensional architecture of the rat OM, together with low medullary oxygen tension (Po(2)), affects the distribution of NO, O(2)(-), and ONOO in the rat OM. In the current study, we sought to determine generation rate and permeability values that are compatible with measurements of medullary NO concentrations and to assess the importance of tubulovascular cross talk and NO-O(2)(-) interactions under physiological conditions. Our results suggest that the main determinants of NO concentrations in the rat OM are the rate of vascular and tubular NO synthesis under hypoxic conditions, and the red blood cell (RBC) permeability to NO (P(NO)(RBC)). The lower the P(NO)(RBC), the lower the amount of NO that is scavenged by hemoglobin species, and the higher the extra-erythrocyte NO concentrations. In addition, our results indicate that basal endothelial NO production acts to significantly limit NaCl reabsorption across medullary thick ascending limbs and to sustain medullary perfusion, whereas basal epithelial NO production has a smaller impact on NaCl transport and a negligible effect on vascular tone. Our model also predicts that O(2)(-) consumption by NO significantly reduces medullary O(2)(-) concentrations, but that O(2)(-) , when present at subnanomolar concentrations, has a small impact on medullary NO bioavailability.
在一项伴随研究中(Edwards A 和 Layton AT. Am J Physiol Renal Physiol. doi:10.1152/ajprenal.00680.2009),我们构建了一个一氧化氮(NO)、超氧阴离子(O2(-))和过氧亚硝酸盐(ONOO)在大鼠外髓质中-外层和中层横截面(OM)中的传输的数学模型。我们研究了大鼠 OM 的三维结构以及低髓质氧张力(Po(2))如何影响大鼠 OM 中 NO、O2(-)和 ONOO 的分布。在当前的研究中,我们试图确定与测量髓质 NO 浓度兼容的生成速率和渗透率值,并评估在生理条件下管-血管交叉对话和 NO-O2(-)相互作用的重要性。我们的结果表明,大鼠 OM 中 NO 浓度的主要决定因素是低氧条件下血管和肾小管中 NO 的合成速率,以及红细胞(RBC)对 NO 的通透性(P(NO)(RBC))。P(NO)(RBC)越低,被血红蛋白物种清除的 NO 量就越少,细胞外 NO 浓度就越高。此外,我们的结果表明,基础内皮细胞 NO 产生显著限制了 NaCl 在髓质厚升支中的重吸收并维持了髓质灌注,而基础上皮细胞 NO 产生对 NaCl 转运的影响较小,对血管张力的影响可以忽略不计。我们的模型还预测,NO 消耗 O2(-)会显著降低髓质中的 O2(-)浓度,但在亚纳摩尔浓度下,O2(-)对髓质 NO 生物利用度的影响很小。