ERL 7226-UMRS 872 équipe 3, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex 6, France.
Am J Physiol Renal Physiol. 2012 Oct;303(7):F907-17. doi: 10.1152/ajprenal.00055.2012. Epub 2012 Jul 11.
The present study aimed to elucidate the reciprocal interactions between oxygen (O(2)), nitric oxide (NO), and superoxide (O(2)(-)) and their effects on vascular and tubular function in the outer medulla. We expanded our region-based model of transport in the rat outer medulla (Edwards A, Layton AT. Am J Physiol Renal Physiol 301: F979-F996, 2011) to incorporate the effects of NO on descending vasa recta (DVR) diameter and blood flow. Our model predicts that the segregation of long DVR in the center of vascular bundles, away from tubular segments, gives rise to large radial NO concentration gradients that in turn result in differential regulation of vasoactivity in short and long DVR. The relative isolation of long DVR shields them from changes in the rate of NaCl reabsorption, and hence from changes in O(2) requirements, by medullary thick ascending limbs (mTALs), thereby preserving O(2) delivery to the inner medulla. The model also predicts that O(2)(-) can sufficiently decrease the bioavailability of NO in the interbundle region to affect the diameter of short DVR, suggesting that the experimentally observed effects of O(2)(-) on medullary blood flow may be at least partly mediated by NO. In addition, our results indicate that the tubulovascular cross talk of NO, that is, the diffusion of NO produced by mTAL epithelia toward adjacent DVR, helps to maintain blood flow and O(2) supply to the interbundle region even under basal conditions. NO also acts to preserve local O(2) availability by inhibiting the rate of active Na(+) transport, thereby reducing the O(2) requirements of mTALs. The dual regulation by NO of oxygen supply and demand is predicted to significantly attenuate the hypoxic effects of angiotensin II.
本研究旨在阐明氧气(O(2))、一氧化氮(NO)和超氧阴离子(O(2)(-))之间的相互作用及其对皮质外髓血管和管状功能的影响。我们扩展了我们在大鼠皮质外髓(Edwards A,Layton AT。Am J Physiol Renal Physiol 301:F979-F996,2011)中的基于区域的转运模型,以纳入 NO 对降支袢(DVR)直径和血流的影响。我们的模型预测,长 DVR 在血管束中心的分离,远离管状段,导致大的径向 NO 浓度梯度,进而导致短和长 DVR 血管活性的差异调节。长 DVR 的相对隔离使它们免受来自髓质升支粗段(mTAL)的 NaCl 重吸收速率变化的影响,从而避免了对氧(O(2))的需求变化,从而维持了向髓质内层的氧(O(2))输送。该模型还预测,O(2)(-) 可以充分降低束间区域中 NO 的生物利用度,从而影响短 DVR 的直径,这表明实验观察到的 O(2)(-) 对髓质血流的影响至少部分是由 NO 介导的。此外,我们的结果表明,NO 的管-血管交叉对话,即 mTAL 上皮产生的 NO 向相邻 DVR 的扩散,有助于维持束间区域的血流和 O(2)供应,即使在基础条件下也是如此。NO 还通过抑制主动 Na(+)转运的速率来维持局部 O(2)的可用性,从而降低 mTAL 的 O(2)需求。NO 对氧(O(2))供应和需求的双重调节预计将显著减轻血管紧张素 II 的缺氧作用。