Suppr超能文献

一氧化氮介导的血管舒张对皮质外髓质 NaCl 转运和氧合的影响。

Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation.

机构信息

ERL 7226-UMRS 872 équipe 3, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex 6, France.

出版信息

Am J Physiol Renal Physiol. 2012 Oct;303(7):F907-17. doi: 10.1152/ajprenal.00055.2012. Epub 2012 Jul 11.

Abstract

The present study aimed to elucidate the reciprocal interactions between oxygen (O(2)), nitric oxide (NO), and superoxide (O(2)(-)) and their effects on vascular and tubular function in the outer medulla. We expanded our region-based model of transport in the rat outer medulla (Edwards A, Layton AT. Am J Physiol Renal Physiol 301: F979-F996, 2011) to incorporate the effects of NO on descending vasa recta (DVR) diameter and blood flow. Our model predicts that the segregation of long DVR in the center of vascular bundles, away from tubular segments, gives rise to large radial NO concentration gradients that in turn result in differential regulation of vasoactivity in short and long DVR. The relative isolation of long DVR shields them from changes in the rate of NaCl reabsorption, and hence from changes in O(2) requirements, by medullary thick ascending limbs (mTALs), thereby preserving O(2) delivery to the inner medulla. The model also predicts that O(2)(-) can sufficiently decrease the bioavailability of NO in the interbundle region to affect the diameter of short DVR, suggesting that the experimentally observed effects of O(2)(-) on medullary blood flow may be at least partly mediated by NO. In addition, our results indicate that the tubulovascular cross talk of NO, that is, the diffusion of NO produced by mTAL epithelia toward adjacent DVR, helps to maintain blood flow and O(2) supply to the interbundle region even under basal conditions. NO also acts to preserve local O(2) availability by inhibiting the rate of active Na(+) transport, thereby reducing the O(2) requirements of mTALs. The dual regulation by NO of oxygen supply and demand is predicted to significantly attenuate the hypoxic effects of angiotensin II.

摘要

本研究旨在阐明氧气(O(2))、一氧化氮(NO)和超氧阴离子(O(2)(-))之间的相互作用及其对皮质外髓血管和管状功能的影响。我们扩展了我们在大鼠皮质外髓(Edwards A,Layton AT。Am J Physiol Renal Physiol 301:F979-F996,2011)中的基于区域的转运模型,以纳入 NO 对降支袢(DVR)直径和血流的影响。我们的模型预测,长 DVR 在血管束中心的分离,远离管状段,导致大的径向 NO 浓度梯度,进而导致短和长 DVR 血管活性的差异调节。长 DVR 的相对隔离使它们免受来自髓质升支粗段(mTAL)的 NaCl 重吸收速率变化的影响,从而避免了对氧(O(2))的需求变化,从而维持了向髓质内层的氧(O(2))输送。该模型还预测,O(2)(-) 可以充分降低束间区域中 NO 的生物利用度,从而影响短 DVR 的直径,这表明实验观察到的 O(2)(-) 对髓质血流的影响至少部分是由 NO 介导的。此外,我们的结果表明,NO 的管-血管交叉对话,即 mTAL 上皮产生的 NO 向相邻 DVR 的扩散,有助于维持束间区域的血流和 O(2)供应,即使在基础条件下也是如此。NO 还通过抑制主动 Na(+)转运的速率来维持局部 O(2)的可用性,从而降低 mTAL 的 O(2)需求。NO 对氧(O(2))供应和需求的双重调节预计将显著减轻血管紧张素 II 的缺氧作用。

相似文献

1
Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation.
Am J Physiol Renal Physiol. 2012 Oct;303(7):F907-17. doi: 10.1152/ajprenal.00055.2012. Epub 2012 Jul 11.
2
Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk.
Am J Physiol Renal Physiol. 2010 Sep;299(3):F634-47. doi: 10.1152/ajprenal.00681.2009. Epub 2010 Jun 2.
3
Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide.
Am J Physiol Renal Physiol. 2011 Nov;301(5):F979-96. doi: 10.1152/ajprenal.00096.2011. Epub 2011 Aug 17.
4
Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension.
Am J Physiol Renal Physiol. 2010 Sep;299(3):F616-33. doi: 10.1152/ajprenal.00680.2009. Epub 2010 Jun 9.
5
A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F537-48. doi: 10.1152/ajprenal.90497.2008. Epub 2009 Apr 29.
6
A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F517-36. doi: 10.1152/ajprenal.90496.2008. Epub 2009 Apr 29.
7
Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.
Am J Physiol Renal Physiol. 2016 Feb 1;310(3):F237-47. doi: 10.1152/ajprenal.00334.2015. Epub 2015 Oct 14.
8
Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla.
Am J Physiol Renal Physiol. 2010 Jun;298(6):F1369-83. doi: 10.1152/ajprenal.00572.2009. Epub 2010 Mar 24.
9
A model of nitric oxide tubulovascular cross talk in a renal outer medullary cross section.
Am J Physiol Renal Physiol. 2007 Feb;292(2):F711-22. doi: 10.1152/ajprenal.00208.2006. Epub 2006 Oct 10.
10
Impact of renal medullary three-dimensional architecture on oxygen transport.
Am J Physiol Renal Physiol. 2014 Aug 1;307(3):F263-72. doi: 10.1152/ajprenal.00149.2014. Epub 2014 Jun 4.

引用本文的文献

1
Renal Medulla in Hypertension.
Hypertension. 2024 Dec;81(12):2383-2394. doi: 10.1161/HYPERTENSIONAHA.124.21711. Epub 2024 Sep 30.
2
Adaptive responses of rat descending vasa recta to ischemia.
Am J Physiol Renal Physiol. 2018 Mar 1;314(3):F373-F380. doi: 10.1152/ajprenal.00062.2017. Epub 2017 Aug 16.
3
Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat.
Math Med Biol. 2017 Sep 1;34(3):313-333. doi: 10.1093/imammb/dqw010.
4
Oxygen transport in a cross section of the rat inner medulla: impact of heterogeneous distribution of nephrons and vessels.
Math Biosci. 2014 Dec;258:68-76. doi: 10.1016/j.mbs.2014.09.009. Epub 2014 Sep 28.

本文引用的文献

1
Role of renal medullary oxidative and/or carbonyl stress in salt-sensitive hypertension and diabetes.
Clin Exp Pharmacol Physiol. 2012 Jan;39(1):125-31. doi: 10.1111/j.1440-1681.2011.05653.x.
2
Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide.
Am J Physiol Renal Physiol. 2011 Nov;301(5):F979-96. doi: 10.1152/ajprenal.00096.2011. Epub 2011 Aug 17.
3
Cellular mechanisms underlying nitric oxide-induced vasodilation of descending vasa recta.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F441-56. doi: 10.1152/ajprenal.00499.2010. Epub 2010 Nov 17.
4
Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla.
Am J Physiol Renal Physiol. 2010 Jun;298(6):F1369-83. doi: 10.1152/ajprenal.00572.2009. Epub 2010 Mar 24.
5
Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation.
Trends Mol Med. 2009 Oct;15(10):452-60. doi: 10.1016/j.molmed.2009.08.002. Epub 2009 Sep 24.
6
A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F517-36. doi: 10.1152/ajprenal.90496.2008. Epub 2009 Apr 29.
7
Nitric oxide reduces flow-induced superoxide production via cGMP-dependent protein kinase in thick ascending limbs.
Am J Physiol Renal Physiol. 2009 May;296(5):F1061-6. doi: 10.1152/ajprenal.90707.2008. Epub 2009 Feb 25.
8
Renal medullary oxidative stress, pressure-natriuresis, and hypertension.
Hypertension. 2008 Nov;52(5):777-86. doi: 10.1161/HYPERTENSIONAHA.107.092858. Epub 2008 Oct 13.
9
Nitric oxide from nitrite reduction by hemoglobin in the plasma and erythrocytes.
Nitric Oxide. 2008 Feb;18(1):47-60. doi: 10.1016/j.niox.2007.09.088. Epub 2007 Oct 9.
10
Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension.
Clin Exp Pharmacol Physiol. 2007 Sep;34(9):946-52. doi: 10.1111/j.1440-1681.2007.04642.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验