Suppr超能文献

折叠核内点突变稳定性的预测。

Prediction of stability upon point mutation in the context of the folding nucleus.

机构信息

Scientific Data Management Laboratory, Arizona State University, Tempe, Arizona, USA.

出版信息

OMICS. 2010 Apr;14(2):151-6. doi: 10.1089/omi.2009.0022.

Abstract

Proteins come in all shapes and sizes. Although it is possible to predict with reasonable success their structure from their sequence, the process of folding a chain of amino acids into its tertiary structure remains partially understood. This article addresses several characteristics pertaining to protein folding. The development of the Most Interacting Residues (MIR) algorithm, which dynamically simulates the early folding events, permits a reasonable ab initio prediction of the deeply buried critical residues involved in the formation of the protein core. The analysis of MIR positions with respect to protein 3D topology, in particular, to fragments called Tightened End Fragments (TEF) that might be good candidate for autonomous folding units, suggests that they are also essential for defining core stability. To validate this hypothesis, this study measures the sensitivity of MIR residues to point mutations. It is performed on a set of 385 proteins from a database that contains stability data calculated with five different algorithms. Tools have been developed to help the analysis and a consensus of the five methods is proposed. It results that positions predicted both as a MIR and a minimum of stability for the consensus are good candidates for the folding nucleus, and consequently their mutations may be hazardous.

摘要

蛋白质的形状和大小各异。虽然可以根据序列合理地预测其结构,但将氨基酸链折叠成三级结构的过程仍部分未知。本文介绍了与蛋白质折叠相关的几个特征。Most Interacting Residues (MIR) 算法的发展,该算法可以动态模拟早期折叠事件,从而可以合理地对参与蛋白质核心形成的深埋关键残基进行从头预测。MIR 位置与蛋白质 3D 拓扑结构的分析,特别是与称为紧密末端片段 (TEF) 的片段有关,TEF 可能是自主折叠单元的良好候选者,表明它们对于定义核心稳定性也是必不可少的。为了验证这一假设,本研究通过对包含五种不同算法计算的稳定性数据的数据库中的 385 种蛋白质进行测量,来确定 MIR 残基对单点突变的敏感性。为此开发了一些工具来帮助分析,并提出了五种方法的共识。结果表明,同时预测为 MIR 和共识的最小稳定性的位置是折叠核心的良好候选者,因此其突变可能是危险的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验