Suppr超能文献

二元比例风险模型的灵活最大似然法

Flexible maximum likelihood methods for bivariate proportional hazards models.

作者信息

He Wenqing, Lawless Jerald F

机构信息

Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.

出版信息

Biometrics. 2003 Dec;59(4):837-48. doi: 10.1111/j.0006-341x.2003.00098.x.

Abstract

This article presents methodology for multivariate proportional hazards (PH) regression models. The methods employ flexible piecewise constant or spline specifications for baseline hazard functions in either marginal or conditional PH models, along with assumptions about the association among lifetimes. Because the models are parametric, ordinary maximum likelihood can be applied; it is able to deal easily with such data features as interval censoring or sequentially observed lifetimes, unlike existing semiparametric methods. A bivariate Clayton model (1978, Biometrika 65, 141-151) is used to illustrate the approach taken. Because a parametric assumption about association is made, efficiency and robustness comparisons are made between estimation based on the bivariate Clayton model and "working independence" methods that specify only marginal distributions for each lifetime variable.

摘要

本文介绍了多变量比例风险(PH)回归模型的方法。这些方法在边际或条件PH模型中,对基线风险函数采用灵活的分段常数或样条规范,同时对寿命之间的关联做出假设。由于这些模型是参数化的,因此可以应用普通最大似然法;与现有的半参数方法不同,它能够轻松处理诸如区间删失或序贯观测寿命等数据特征。使用双变量克莱顿模型(1978年,《生物统计学》65卷,第141 - 151页)来说明所采用的方法。由于对关联进行了参数化假设,因此在基于双变量克莱顿模型的估计与仅为每个寿命变量指定边际分布的“工作独立性”方法之间进行了效率和稳健性比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验