Groningen Bioinformatics Center, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
BMC Genomics. 2010 Mar 26;11:202. doi: 10.1186/1471-2164-11-202.
The transition from exponential to stationary phase in Streptomyces coelicolor is accompanied by a major metabolic switch and results in a strong activation of secondary metabolism. Here we have explored the underlying reorganization of the metabolome by combining computational predictions based on constraint-based modeling and detailed transcriptomics time course observations.
We reconstructed the stoichiometric matrix of S. coelicolor, including the major antibiotic biosynthesis pathways, and performed flux balance analysis to predict flux changes that occur when the cell switches from biomass to antibiotic production. We defined the model input based on observed fermenter culture data and used a dynamically varying objective function to represent the metabolic switch. The predicted fluxes of many genes show highly significant correlation to the time series of the corresponding gene expression data. Individual mispredictions identify novel links between antibiotic production and primary metabolism.
Our results show the usefulness of constraint-based modeling for providing a detailed interpretation of time course gene expression data.
链霉菌从指数生长期向稳定生长期的转变伴随着一个主要的代谢转换,并导致次级代谢的强烈激活。在这里,我们通过结合基于约束建模的计算预测和详细的转录组时间过程观察,探索了代谢组的潜在重组。
我们重建了链霉菌的代谢物矩阵,包括主要的抗生素生物合成途径,并进行了通量平衡分析,以预测当细胞从生物量切换到抗生素生产时发生的通量变化。我们根据观察到的发酵罐培养数据定义了模型输入,并使用动态变化的目标函数来表示代谢转换。许多基因的预测通量与相应基因表达数据的时间序列高度显著相关。个别错误预测确定了抗生素生产与初级代谢之间的新联系。
我们的结果表明,约束建模对于提供时间过程基因表达数据的详细解释是有用的。