Suppr超能文献

通过 Na+/葡萄糖协同转运蛋白 SGLT1 的漏电流的实际离子性质。

The actual ionic nature of the leak current through the Na+/glucose cotransporter SGLT1.

机构信息

Groupe d'Etude des Protéines Membranaires, Département de Physique, Université de Montréal, Montréal, Québec, Canada.

出版信息

Biophys J. 2010 Jan 20;98(2):231-9. doi: 10.1016/j.bpj.2009.10.015.

Abstract

Expression of the Na(+)/glucose cotransporter SGLT1 in Xenopus oocytes is characterized by a phlorizin-sensitive leak current (in the absence of glucose) that was originally called a "Na(+) leak" and represents some 5-10% of the maximal Na(+)/glucose cotransport current. We analyzed the ionic nature of the leak current using a human SGLT1 mutant (C292A) displaying a threefold larger leak current while keeping a reversal potential (V(R)) of approximately -15 mV as observed for wt SGLT1. V(R) showed only a modest negative shift when extracellular Na(+) concentration (Na(+)) was lowered and it was completely insensitive to changes in extracellular Cl(-). When extracellular pH (pH(o)) was decreased from 7.5 to 6.5 and 5.5, V(R) shifted by +15 and +40 mV, respectively, indicating that protons may be the main charge carrier at low pH(o) but other ions must be involved at pH(o) 7.5. In the presence of 15 mM Na(+) (pH(o) = 7.5), addition of 75 mM of either Na(+), Li(+), Cs(+), or K(+) generated similar increases in the leak current amplitude. This observation, which was confirmed with wt SGLT1, indicates a separate pathway for the leak current with respect to the cotransport current. This means that, contrary to previous beliefs, the leak current cannot be accounted for by the translocation of the Na-loaded and glucose-free cotransporter. Using chemical modification and different SGLT1 mutants, a relationship was found between the cationic leak current and the passive water permeability suggesting that water and cations may share a common pathway through the cotransporter.

摘要

SGLT1 的表达在爪蟾卵母细胞中表现为一种对根皮苷敏感的渗漏电流(在没有葡萄糖的情况下),最初被称为“Na+渗漏”,约占最大 Na+/葡萄糖共转运电流的 5-10%。我们使用一种人 SGLT1 突变体(C292A)分析了渗漏电流的离子性质,该突变体显示出三倍大的渗漏电流,同时保持约 -15 mV 的反转电位(V(R)),与 wt SGLT1 观察到的相似。当细胞外 Na+浓度 (Na+) 降低时,V(R) 仅显示出适度的负移,并且对细胞外 Cl-的变化完全不敏感。当细胞外 pH (pH(o)) 从 7.5 降低至 6.5 和 5.5 时,V(R) 分别移动+15 和+40 mV,表明在低 pH(o) 下质子可能是主要的电荷载体,但在 pH(o) 7.5 时必须涉及其他离子。在存在 15 mM Na+(pH(o) = 7.5)的情况下,添加 75 mM 的 Na+、Li+、Cs+或 K+都会导致渗漏电流幅度相似的增加。这一观察结果(在 wt SGLT1 中得到了证实)表明,渗漏电流与共转运电流之间存在单独的途径。这意味着,与之前的观点相反,渗漏电流不能用 Na+负载和无葡萄糖的共转运体的易位来解释。使用化学修饰和不同的 SGLT1 突变体,发现阳离子渗漏电流与被动水通透性之间存在关系,这表明水和阳离子可能通过共转运体共享一个共同的途径。

相似文献

1
The actual ionic nature of the leak current through the Na+/glucose cotransporter SGLT1.
Biophys J. 2010 Jan 20;98(2):231-9. doi: 10.1016/j.bpj.2009.10.015.
3
Sodium leak pathway and substrate binding order in the Na+-glucose cotransporter.
Biophys J. 1997 Nov;73(5):2503-10. doi: 10.1016/S0006-3495(97)78278-X.
4
Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter.
Biophys J. 1995 Dec;69(6):2405-14. doi: 10.1016/S0006-3495(95)80110-4.
5
Conformational dynamics of hSGLT1 during Na+/glucose cotransport.
J Gen Physiol. 2006 Dec;128(6):701-20. doi: 10.1085/jgp.200609643.
6
Passive water and ion transport by cotransporters.
J Physiol. 1999 Jul 1;518(Pt 1):195-202. doi: 10.1111/j.1469-7793.1999.0195r.x.
7
8
Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1).
J Membr Biol. 1997 Jan 15;155(2):175-86. doi: 10.1007/s002329900169.
9
Measuring ion transport activities in Xenopus oocytes using the ion-trap technique.
Am J Physiol Cell Physiol. 2008 Nov;295(5):C1464-72. doi: 10.1152/ajpcell.00560.2007. Epub 2008 Oct 1.

引用本文的文献

2
The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.
J Biol Chem. 2016 Apr 29;291(18):9712-20. doi: 10.1074/jbc.M115.706986. Epub 2016 Mar 4.
3
The transport mechanism of the human sodium/myo-inositol transporter 2 (SMIT2/SGLT6), a member of the LeuT structural family.
Am J Physiol Cell Physiol. 2014 Sep 1;307(5):C431-41. doi: 10.1152/ajpcell.00054.2014. Epub 2014 Jun 18.
4
Simulated annealing reveals the kinetic activity of SGLT1, a member of the LeuT structural family.
J Gen Physiol. 2012 Oct;140(4):361-74. doi: 10.1085/jgp.201210822.
5
The structural pathway for water permeation through sodium-glucose cotransporters.
Biophys J. 2011 Oct 19;101(8):1887-95. doi: 10.1016/j.bpj.2011.09.019.
6
7
Surprising substrate versatility in SLC5A6: Na+-coupled I- transport by the human Na+/multivitamin transporter (hSMVT).
J Biol Chem. 2011 Jan 7;286(1):131-7. doi: 10.1074/jbc.M110.167197. Epub 2010 Oct 27.

本文引用的文献

1
Structure and function of Na(+)-symporters with inverted repeats.
Curr Opin Struct Biol. 2009 Aug;19(4):425-32. doi: 10.1016/j.sbi.2009.06.002. Epub 2009 Jul 22.
2
The leak mode of type II Na(+)-P(i) cotransporters.
Channels (Austin). 2008 Sep-Oct;2(5):346-57. doi: 10.4161/chan.2.5.6900.
3
The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport.
Science. 2008 Aug 8;321(5890):810-4. doi: 10.1126/science.1160406. Epub 2008 Jul 3.
4
Effect of substrate on the pre-steady-state kinetics of the Na(+)/glucose cotransporter.
Biophys J. 2007 Jan 15;92(2):461-72. doi: 10.1529/biophysj.106.092296. Epub 2006 Oct 27.
6
Intracellular hypertonicity is responsible for water flux associated with Na+/glucose cotransport.
Biophys J. 2006 May 15;90(10):3546-54. doi: 10.1529/biophysj.105.076745. Epub 2006 Feb 24.
8
Novel properties of a mouse gamma-aminobutyric acid transporter (GAT4).
J Membr Biol. 2005 Jan;203(2):65-82. doi: 10.1007/s00232-004-0732-5.
9
Determination of transport stoichiometry for two cation-coupled myo-inositol cotransporters: SMIT2 and HMIT.
J Physiol. 2005 Mar 1;563(Pt 2):333-43. doi: 10.1113/jphysiol.2004.076679. Epub 2004 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验