Suppr超能文献

II 型结合对细胞色素 P450 CYP3A4 代谢稳定性和结合亲和力的影响。

The effects of type II binding on metabolic stability and binding affinity in cytochrome P450 CYP3A4.

机构信息

Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA.

出版信息

Arch Biochem Biophys. 2010 May;497(1-2):68-81. doi: 10.1016/j.abb.2010.03.011. Epub 2010 Mar 25.

Abstract

One goal in drug design is to decrease clearance due to metabolism. It has been suggested that a compound's metabolic stability can be increased by incorporation of a sp(2) nitrogen into an aromatic ring. Nitrogen incorporation is hypothesized to increase metabolic stability by coordination of nitrogen to the heme-iron (termed type II binding). However, questions regarding binding affinity, metabolic stability, and how metabolism of type II binders occurs remain unanswered. Herein, we use pyridinyl quinoline-4-carboxamide analogs to answer these questions. We show that type II binding can have a profound influence on binding affinity for CYP3A4, and the difference in binding affinity can be as high as 1200-fold. We also find that type II binding compounds can be extensively metabolized, which is not consistent with the dead-end complex kinetic model assumed for type II binders. Two alternate kinetic mechanisms are presented to explain the results. The first involves a rapid equilibrium between the type II bound substrate and a metabolically oriented binding mode. The second involves direct reduction of the nitrogen-coordinated heme followed by oxygen binding.

摘要

药物设计的一个目标是降低因代谢引起的清除率。有人提出,在芳环中引入 sp2 氮可以增加化合物的代谢稳定性。氮的掺入被假设通过氮与血红素铁的配位(称为 II 型结合)来增加代谢稳定性。然而,关于结合亲和力、代谢稳定性以及 II 型结合物的代谢如何发生的问题仍未得到解答。在这里,我们使用吡啶基喹啉-4-甲酰胺类似物来回答这些问题。我们表明,II 型结合可以对 CYP3A4 的结合亲和力产生深远影响,结合亲和力的差异高达 1200 倍。我们还发现,II 型结合化合物可以被广泛代谢,这与假设的 II 型结合物的无终末复合物动力学模型不一致。提出了两种替代的动力学机制来解释这些结果。第一种涉及 II 型结合底物与代谢定向结合模式之间的快速平衡。第二种涉及氮配位血红素的直接还原,然后是氧结合。

相似文献

1
The effects of type II binding on metabolic stability and binding affinity in cytochrome P450 CYP3A4.
Arch Biochem Biophys. 2010 May;497(1-2):68-81. doi: 10.1016/j.abb.2010.03.011. Epub 2010 Mar 25.
2
The kinetic mechanism for cytochrome P450 metabolism of type II binding compounds: evidence supporting direct reduction.
Arch Biochem Biophys. 2011 Jul;511(1-2):69-79. doi: 10.1016/j.abb.2011.04.008. Epub 2011 Apr 21.
3
Visible spectra of type II cytochrome P450-drug complexes: evidence that "incomplete" heme coordination is common.
Drug Metab Dispos. 2007 Apr;35(4):614-22. doi: 10.1124/dmd.106.012609. Epub 2007 Jan 24.
5
1,2,3-Triazole-heme interactions in cytochrome P450: functionally competent triazole-water-heme complexes.
Biochemistry. 2012 Aug 14;51(32):6441-57. doi: 10.1021/bi300744z. Epub 2012 Jul 31.
6
Binding free energies of inhibitors to iron porphyrin complex as a model for Cytochrome P450.
Biopolymers. 2012 Apr;97(4):219-28. doi: 10.1002/bip.22009. Epub 2011 Nov 24.
9
Interaction of human cytochrome P4503A4 with ritonavir analogs.
Arch Biochem Biophys. 2012 Apr 15;520(2):108-16. doi: 10.1016/j.abb.2012.02.018. Epub 2012 Mar 5.

引用本文的文献

1
Enzyme Kinetics of Oxidative Metabolism-Cytochromes P450.
Methods Mol Biol. 2021;2342:237-256. doi: 10.1007/978-1-0716-1554-6_9.
2
Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes.
J Biol Chem. 2019 Jul 12;294(28):10928-10941. doi: 10.1074/jbc.RA119.009305. Epub 2019 May 30.
4
Structural, functional, and spectroscopic characterization of the substrate scope of the novel nitrating cytochrome P450 TxtE.
Chembiochem. 2014 Oct 13;15(15):2259-67. doi: 10.1002/cbic.201402241. Epub 2014 Sep 2.
5
Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis.
Bioorg Med Chem. 2014 Oct 15;22(20):5547-54. doi: 10.1016/j.bmc.2014.06.034. Epub 2014 Jun 25.
6
1,2,3-Triazole-heme interactions in cytochrome P450: functionally competent triazole-water-heme complexes.
Biochemistry. 2012 Aug 14;51(32):6441-57. doi: 10.1021/bi300744z. Epub 2012 Jul 31.
8
Inhibition of human liver aldehyde oxidase: implications for potential drug-drug interactions.
Drug Metab Dispos. 2011 Dec;39(12):2381-6. doi: 10.1124/dmd.111.041806. Epub 2011 Sep 22.
9
Small molecule quantification by liquid chromatography-mass spectrometry for metabolites of drugs and drug candidates.
Drug Metab Dispos. 2011 Dec;39(12):2355-60. doi: 10.1124/dmd.111.040865. Epub 2011 Sep 21.
10
The effects of nitrogen-heme-iron coordination on substrate affinities for cytochrome P450 2E1.
Chem Biol Interact. 2011 Aug 15;193(1):50-6. doi: 10.1016/j.cbi.2011.05.001. Epub 2011 May 10.

本文引用的文献

1
Performance of a nonempirical density functional on molecules and hydrogen-bonded complexes.
J Chem Phys. 2016 Dec 21;145(23):234306. doi: 10.1063/1.4971853.
2
Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer.
Biochemistry. 2009 Dec 29;48(51):12104-12. doi: 10.1021/bi9011435.
3
Cytochrome P450 2C9 type II binding studies on quinoline-4-carboxamide analogues.
J Med Chem. 2008 Dec 25;51(24):8000-11. doi: 10.1021/jm8011257.
4
Modeling and synthesis of novel tight-binding inhibitors of cytochrome P450 2C9.
Bioorg Med Chem. 2008 Apr 1;16(7):4064-74. doi: 10.1016/j.bmc.2008.01.021. Epub 2008 Jan 18.
8
Visible spectra of type II cytochrome P450-drug complexes: evidence that "incomplete" heme coordination is common.
Drug Metab Dispos. 2007 Apr;35(4):614-22. doi: 10.1124/dmd.106.012609. Epub 2007 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验