Suppr超能文献

囊性纤维化中的肺泡炎症。

Alveolar inflammation in cystic fibrosis.

机构信息

Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.

出版信息

J Cyst Fibros. 2010 May;9(3):217-27. doi: 10.1016/j.jcf.2010.03.001. Epub 2010 Mar 29.

Abstract

BACKGROUND

In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release and ceramide accumulation. We sought to investigate CF lung inflammation in the alveoli.

METHODS

Lung tissue from 14 CF patients and four healthy individuals was analyzed for numbers of effector cells, elastin and collagen concentrations, inflammatory markers and density of Pseudomonas aeruginosa. Additionally, desmosine and isodesmosine concentrations were determined in 52 urine specimens from CF patients to estimate the burden of elastase activities in respiratory secretions.

RESULTS

Elastin concentration was significantly decreased and collagen significantly increased in CF alveolar tissues as compared to age-matched, healthy individuals. Elastin split products were significantly increased in urine samples from patients with CF and correlated inversely with age, indicating local tissue remodelling due to elastin degradation by unopposed proteolytic enzymes. Alveolar inflammation was also characterized by a significant cell infiltration of neutrophils, macrophages and T cells, extensive nuclear factor-kappaB and insulin-like growth factor-1 activation in various cell types and increased intercellular adhesion molecule-1 expression, and increased numbers of myofibroblasts. Additionally, ceramide accumulated in type II alveolar epithelial cells, lacking CFTR. P. aeruginosa organisms were rarely present in inflamed alveoli.

CONCLUSIONS

Chronic inflammation and remodeling is present in alveolar tissues of the CF lung and needs to be addressed by anti-inflammatory therapies.

摘要

背景

在囊性纤维化(CF)患者的感染肺部中,机会性病原体和突变的囊性纤维化跨膜电导调节蛋白(CFTR)导致慢性气道炎症,其特征是中性粒细胞/巨噬细胞浸润、细胞因子释放和神经酰胺积累。我们试图研究肺泡中的 CF 肺部炎症。

方法

分析了 14 名 CF 患者和 4 名健康个体的肺组织中效应细胞的数量、弹性蛋白和胶原蛋白浓度、炎症标志物和铜绿假单胞菌的密度。此外,还测定了 52 份 CF 患者尿液标本中的脱亚氨酸和异脱亚氨酸浓度,以估计呼吸道分泌物中弹性酶活性的负担。

结果

与年龄匹配的健康个体相比,CF 肺泡组织中的弹性蛋白浓度显著降低,胶原蛋白显著增加。CF 患者尿液样本中的弹性蛋白分解产物显著增加,并与年龄呈负相关,表明由于未被蛋白酶抑制的弹性酶降解,导致局部组织重塑。肺泡炎症还表现为中性粒细胞、巨噬细胞和 T 细胞的显著细胞浸润,各种细胞类型中核因子-κB 和胰岛素样生长因子-1 的广泛激活,以及细胞间黏附分子-1 表达的增加和肌成纤维细胞数量的增加。此外,神经酰胺在缺乏 CFTR 的 II 型肺泡上皮细胞中积累。在炎症肺泡中很少存在铜绿假单胞菌。

结论

慢性炎症和重塑存在于 CF 肺部的肺泡组织中,需要通过抗炎治疗来解决。

相似文献

1
Alveolar inflammation in cystic fibrosis.
J Cyst Fibros. 2010 May;9(3):217-27. doi: 10.1016/j.jcf.2010.03.001. Epub 2010 Mar 29.
2
Elastin and collagen degradation products in urine of patients with cystic fibrosis.
Am J Respir Crit Care Med. 1995 Jul;152(1):157-62. doi: 10.1164/ajrccm.152.1.7599816.
3
Urinary desmosine: a biomarker of structural lung injury during CF pulmonary exacerbation.
Pediatr Pulmonol. 2012 Sep;47(9):856-63. doi: 10.1002/ppul.22525. Epub 2012 Mar 19.
4
MEKC of desmosine and isodesmosine in urine of chronic destructive lung disease patients.
Eur Respir J. 2000 Jun;15(6):1039-45. doi: 10.1034/j.1399-3003.2000.01511.x.
6
Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis.
Am Rev Respir Dis. 1985 Sep;132(3):529-35. doi: 10.1164/arrd.1985.132.3.529.
8
Harnessing Neutrophil Survival Mechanisms during Chronic Infection by : Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis.
Front Cell Infect Microbiol. 2017 Jun 30;7:243. doi: 10.3389/fcimb.2017.00243. eCollection 2017.
9
Interferon regulatory factor 8 regulates expression of acid ceramidase and infection susceptibility in cystic fibrosis.
J Biol Chem. 2021 Jan-Jun;296:100650. doi: 10.1016/j.jbc.2021.100650. Epub 2021 Apr 9.
10
MPB-07 reduces the inflammatory response to Pseudomonas aeruginosa in cystic fibrosis bronchial cells.
Am J Respir Cell Mol Biol. 2007 May;36(5):615-24. doi: 10.1165/rcmb.2006-0200OC. Epub 2006 Dec 29.

引用本文的文献

1
Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights.
Curr Med Sci. 2024 Dec;44(6):1155-1174. doi: 10.1007/s11596-024-2936-5. Epub 2024 Dec 16.
2
Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy.
Nat Biotechnol. 2024 Dec 10. doi: 10.1038/s41587-024-02490-y.
3
Saccharomyces cerevisiae β-glucan improves the response of trained macrophages to severe P. aeruginosa infections.
Inflamm Res. 2024 Aug;73(8):1283-1297. doi: 10.1007/s00011-024-01898-1. Epub 2024 Jun 8.
4
5
Role of innate immunity and systemic inflammation in cystic fibrosis disease progression.
Heliyon. 2023 Jun 29;9(7):e17553. doi: 10.1016/j.heliyon.2023.e17553. eCollection 2023 Jul.
6
PK-PD Evaluation of Inhaled Microparticles loaded with Ciprofloxacin-Copper complex in a Rat Model of Chronic Lung Infection.
Int J Pharm X. 2023 Mar 11;5:100178. doi: 10.1016/j.ijpx.2023.100178. eCollection 2023 Dec.
7
Pathogenicity and virulence of .
Virulence. 2023 Dec;14(1):2172264. doi: 10.1080/21505594.2023.2172264.
8
Population-wide gene disruption in the murine lung epithelium via AAV-mediated delivery of CRISPR-Cas9 components.
Mol Ther Methods Clin Dev. 2022 Nov 1;27:431-449. doi: 10.1016/j.omtm.2022.10.016. eCollection 2022 Dec 8.
9
Single-Cell RNA Sequencing Reveals New Basic and Translational Insights in the Cystic Fibrosis Lung.
Am J Respir Cell Mol Biol. 2023 Feb;68(2):131-139. doi: 10.1165/rcmb.2022-0038TR.
10
DMBT1 is upregulated in cystic fibrosis, affects ciliary motility, and is reduced by acetylcysteine.
Mol Cell Pediatr. 2022 Mar 5;9(1):4. doi: 10.1186/s40348-022-00136-0.

本文引用的文献

1
Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients.
Pediatr Pulmonol. 2009 Jun;44(6):547-58. doi: 10.1002/ppul.21011.
2
Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis.
Nat Med. 2008 Apr;14(4):382-91. doi: 10.1038/nm1748. Epub 2008 Mar 30.
3
Expression of cystic fibrosis transmembrane conductance regulator in the human distal lung.
Hum Pathol. 2008 Mar;39(3):368-76. doi: 10.1016/j.humpath.2007.06.020. Epub 2007 Nov 28.
4
Airway remodelling in children with cystic fibrosis.
Thorax. 2007 Dec;62(12):1074-80. doi: 10.1136/thx.2006.074641. Epub 2007 May 25.
5
CFTR regulates phagosome acidification in macrophages and alters bactericidal activity.
Nat Cell Biol. 2006 Sep;8(9):933-44. doi: 10.1038/ncb1456. Epub 2006 Aug 20.
6
Innate immune response in CF airway epithelia: hyperinflammatory?
Am J Physiol Cell Physiol. 2006 Aug;291(2):C218-30. doi: 10.1152/ajpcell.00605.2005.
8
Functional ion channels in pulmonary alveolar type I cells support a role for type I cells in lung ion transport.
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4964-9. doi: 10.1073/pnas.0600855103. Epub 2006 Mar 20.
9
Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells.
Am J Physiol Lung Cell Mol Physiol. 2006 Feb;290(2):L242-9. doi: 10.1152/ajplung.00178.2005. Epub 2005 Sep 2.
10
Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice.
Nat Med. 2005 May;11(5):491-8. doi: 10.1038/nm1238. Epub 2005 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验