Chemical Biology Department, Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
J Bacteriol. 2010 Jun;192(11):2839-51. doi: 10.1128/JB.01557-09. Epub 2010 Mar 26.
Genome sequencing of Streptomyces species has highlighted numerous potential genes of secondary metabolite biosynthesis. The mining of cryptic genes is important for exploring chemical diversity. Here we report the metabolite-guided genome mining and functional characterization of a cryptic gene by biochemical studies. Based on systematic purification of metabolites from Streptomyces sp. SN-593, we isolated a novel compound, 6-dimethylallylindole (DMAI)-3-carbaldehyde. Although many 6-DMAI compounds have been isolated from a variety of organisms, an enzyme catalyzing the transfer of a dimethylallyl group to the C-6 indole ring has not been reported so far. A homology search using known prenyltransferase sequences against the draft sequence of the Streptomyces sp. SN-593 genome revealed the iptA gene. The IptA protein showed 27% amino acid identity to cyanobacterial LtxC, which catalyzes the transfer of a geranyl group to (-)-indolactam V. A BLAST search against IptA revealed much-more-similar homologs at the amino acid level than LtxC, namely, SAML0654 (60%) from Streptomyces ambofaciens ATCC 23877 and SCO7467 (58%) from S. coelicolor A3(2). Phylogenetic analysis showed that IptA was distinct from bacterial aromatic prenyltransferases and fungal indole prenyltransferases. Detailed kinetic analyses of IptA showed the highest catalytic efficiency (6.13 min(-1) microM(-1)) for L-Trp in the presence of dimethylallyl pyrophosphate (DMAPP), suggesting that the enzyme is a 6-dimethylallyl-L-Trp synthase (6-DMATS). Substrate specificity analyses of IptA revealed promiscuity for indole derivatives, and its reaction products were identified as novel 6-DMAI compounds. Moreover, DeltaiptA mutants abolished the production of 6-DMAI-3-carbaldehyde as well as 6-dimethylallyl-L-Trp, suggesting that the iptA gene is involved in the production of 6-DMAI-3-carbaldehyde.
链霉菌物种的基因组测序突出了许多潜在的次生代谢物生物合成基因。挖掘隐藏基因对于探索化学多样性很重要。在这里,我们通过生化研究报告了基于代谢产物指导的链霉菌 SN-593 基因组挖掘和隐性基因的功能表征。基于从链霉菌 SN-593 中系统地分离代谢产物,我们分离出一种新型化合物,6-二甲基丙烯基吲哚(DMAI)-3-醛。尽管已经从各种生物体中分离出许多 6-DMAI 化合物,但迄今为止尚未报道催化二甲基丙烯基基团转移到 C-6 吲哚环的酶。使用已知的 prenyltransferase 序列对链霉菌 SN-593 基因组的草图序列进行同源搜索,揭示了 iptA 基因。IptA 蛋白与蓝细菌 LtxC 的氨基酸序列有 27%的同源性,后者催化香叶基基团转移到(-)-吲哚乙酰胺 V。针对 IptA 的 BLAST 搜索揭示了在氨基酸水平上与 LtxC 更相似的同源物,即来自链霉菌 ambofaciens ATCC 23877 的 SAML0654(60%)和来自 S. coelicolor A3(2) 的 SCO7467(58%)。系统发育分析表明,IptA 与细菌芳香族 prenyltransferase 和真菌吲哚 prenyltransferase 不同。对 IptA 的详细动力学分析表明,在存在二甲基烯丙基焦磷酸(DMAPP)的情况下,L-Trp 的催化效率最高(6.13 min(-1) microM(-1)),表明该酶是 6-二甲基丙烯基-L-Trp 合酶(6-DMATS)。IptA 的底物特异性分析表明对吲哚衍生物具有混杂性,其反应产物被鉴定为新型 6-DMAI 化合物。此外,DeltaiptA 突变体消除了 6-DMAI-3-醛以及 6-二甲基丙烯基-L-Trp 的产生,表明 iptA 基因参与了 6-DMAI-3-醛的产生。