用于两亲物-水体系中双连续立方反相相稳定性的四阶曲率能量模型。
Fourth-order curvature energy model for the stability of bicontinuous inverted cubic phases in amphiphile-water systems.
机构信息
Givaudan Inc., 1199 Edison Drive, Cincinnati, Ohio 45216, USA.
出版信息
Langmuir. 2010 Jun 1;26(11):8673-83. doi: 10.1021/la904838z.
The bicontinuous inverted cubic (Q(II)) phases of amphiphiles in water have many practical applications. It is necessary to understand the stability of these phases as a function of composition and ambient conditions in order to make the best use of them. Moreover, many biomembrane lipids and some biomembrane lipid extracts form Q(II) phases. The stability of Q(II) phases in a given lipid composition is closely related to the susceptibility of that composition to membrane fusion: changes in composition that stabilize Q(II) phases usually increase the rate of membrane fusion. However, the factors determining Q(II) phase stability are not fully understood. Previously, an expression was derived for the curvature free energy of Q(II) phases with respect to that of the lamellar (L(alpha)) phase using a model for the curvature energy with terms up to fourth order in curvature as formulated by Mitov. Here this model is extended to account for the effects of water content on Q(II) phase stability. It is shown that the observed L(alpha)/Q(II) phase-transition temperature, transition enthalpy, and transition kinetics are all sensitive to water content. The same observables also become sensitive to small noncurvature energy contributions to the total free-energy difference between the Q(II) and L(alpha) phases, especially the unbinding energy in the L(alpha) phase. These predictions rationalize earlier observations of Q(II) phase formation in N-monomethylated dioleoylphosphatidylethanolamine that otherwise appear to be inconsistent. The model also provides a fundamental explanation of the hysteresis typically observed in transitions between the L(alpha) and Q(II) phases. It is an accurate model of Q(II) phase stability when the ratio of the volume fraction of the lipid in the Q(II) phase unit cell is < or = 0.5.
两亲物在水中的双连续立方反向(Q(II))相具有许多实际应用。为了充分利用这些相,有必要了解它们作为组成和环境条件函数的稳定性。此外,许多生物膜脂质和一些生物膜脂质提取物形成 Q(II)相。在给定的脂质组成中,Q(II)相的稳定性与该组成对膜融合的敏感性密切相关:稳定 Q(II)相的组成变化通常会增加膜融合的速率。然而,决定 Q(II)相稳定性的因素尚未完全了解。先前,Mitov 提出的曲率能量模型中,用一个曲率能量模型推导出了 Q(II)相对于层状(L(alpha))相的曲率自由能的表达式,该模型的曲率项最高可达四阶。在这里,该模型被扩展到考虑水含量对 Q(II)相稳定性的影响。结果表明,观察到的 L(alpha)/Q(II)相转变温度、转变焓和转变动力学都对水含量敏感。同样的观察结果也对 Q(II)相与 L(alpha)相之间总自由能差的曲率能量贡献的微小变化敏感,特别是 L(alpha)相中的非结合能。这些预测解释了以前在 N-单甲基化二油酰基磷脂酰乙醇胺中观察到的 Q(II)相形成的现象,否则这些现象似乎不一致。该模型还为 L(alpha)相与 Q(II)相之间的转变通常观察到的滞后现象提供了一个基本解释。当 Q(II)相单元中脂质的体积分数比 <或= 0.5 时,它是一个准确的 Q(II)相稳定性模型。