Suppr超能文献

膜融合中间体的高斯曲率弹性能量。

The Gaussian curvature elastic energy of intermediates in membrane fusion.

作者信息

Siegel David P

机构信息

Givaudan, Inc, Cincinnati, Ohio 45216, USA.

出版信息

Biophys J. 2008 Dec;95(11):5200-15. doi: 10.1529/biophysj.108.140152. Epub 2008 Sep 19.

Abstract

The Gaussian curvature elastic energy contribution to the energy of membrane fusion intermediates has usually been neglected because the Gaussian curvature elastic modulus, kappa, was unknown. It is now possible to measure kappa for phospholipids that form bicontinuous inverted cubic (Q(II)) phases. Here, it is shown that one can estimate kappa for lipids that do not form Q(II) phases by studying the phase behavior of lipid mixtures. The method is used to estimate kappa for several lipid compositions in excess water. The values of kappa are used to compute the curvature elastic energies of stalks and catenoidal fusion pores according to recent models. The Gaussian curvature elastic contribution is positive and similar in magnitude to the bending energy contribution: it increases the total curvature energy of all the fusion intermediates by 100 units of k(B)T or more. It is important to note that this contribution makes the predicted intermediate energies compatible with observed lipid phase behavior in excess water. An order-of-magnitude fusion rate equation is used to estimate whether the predicted stalk energies are consistent with the observed rates of stalk-mediated processes in pure lipid systems. The current theory predicts a stalk energy that is slightly too large, by approximately 30 k(B)T, to rationalize the observed rates of stalk-mediated processes in phosphatidylethanolamine or N-monomethylated dioleoylphosphatidylethanolamine systems. Despite this discrepancy, the results show that models of fusion intermediate energy are accurate enough to make semiquantitative predictions about how proteins mediate biomembrane fusion. The same rate model shows that for proteins to drive biomembrane fusion at observed rates, they have to perform mediating functions corresponding to a reduction in the energy of a purely lipidic stalk by several tens of k(B)T. By binding particular peptide sequences to the monolayer surface, proteins could lower fusion intermediate energies by altering the elastic constants of the patches of lipid monolayer that form the stalk. Here, it is shown that if peptide binding changes kappa or some other combinations of local elastic constants by only tens of percents, the stalk energy and the energy of catenoidal fusion pores would decrease by tens of k(B)T relative to the pure lipid value. This is comparable to the required mediating effect. The curvature energies of stalks and catenoidal fusion pores have almost the same dependence on monolayer elastic constants as the curvature energies of the rhombohedral and Q(II) phases; respectively. The effects of isolated fusion-relevant peptides on the energies of these intermediates can be determined by studying the effects of the peptides on the stability of rhombohedral and Q(II) phases.

摘要

由于高斯曲率弹性模量κ未知,高斯曲率弹性能对膜融合中间体能量的贡献通常被忽略。现在可以测量形成双连续反相立方(Q(II))相的磷脂的κ。在此表明,通过研究脂质混合物的相行为,可以估计不形成Q(II)相的脂质的κ。该方法用于估计过量水中几种脂质组成的κ。根据最近的模型,κ值用于计算茎和链状融合孔的曲率弹性能。高斯曲率弹性贡献为正,大小与弯曲能贡献相似:它使所有融合中间体的总曲率能增加100个k(B)T单位或更多。重要的是要注意,这种贡献使预测的中间体能量与过量水中观察到的脂质相行为相兼容。一个数量级的融合速率方程用于估计预测的茎能量是否与纯脂质系统中观察到的茎介导过程的速率一致。当前理论预测的茎能量略大,约为30 k(B)T,无法合理解释磷脂酰乙醇胺或N-单甲基化二油酰磷脂酰乙醇胺系统中观察到的茎介导过程的速率。尽管存在这种差异,但结果表明,融合中间体能量模型足够准确,可以对蛋白质如何介导生物膜融合进行半定量预测。相同的速率模型表明,为了使蛋白质以观察到的速率驱动生物膜融合,它们必须执行相应的介导功能,将纯脂质茎的能量降低几十k(B)T。通过将特定的肽序列结合到单层表面,蛋白质可以通过改变形成茎的脂质单层斑块的弹性常数来降低融合中间体能量。在此表明,如果肽结合仅使κ或其他局部弹性常数的组合改变几十百分比,则相对于纯脂质值,茎能量和链状融合孔的能量将降低几十k(B)T。这与所需的介导效果相当。茎和链状融合孔的曲率能对单层弹性常数的依赖性与菱面体和Q(II)相的曲率能几乎相同;分别。通过研究肽对菱面体和Q(II)相稳定性的影响,可以确定与融合相关的分离肽对这些中间体能量的影响。

相似文献

1
The Gaussian curvature elastic energy of intermediates in membrane fusion.
Biophys J. 2008 Dec;95(11):5200-15. doi: 10.1529/biophysj.108.140152. Epub 2008 Sep 19.
3
The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion.
Biophys J. 1999 Jan;76(1 Pt 1):291-313. doi: 10.1016/S0006-3495(99)77197-3.
4
Determining the ratio of the Gaussian curvature and bending elastic moduli of phospholipids from Q(II) phase unit cell dimensions.
Biophys J. 2006 Jul 15;91(2):608-18. doi: 10.1529/biophysj.106.085225. Epub 2006 Apr 28.
5
Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases.
Biophys J. 2008 May 15;94(10):3987-95. doi: 10.1529/biophysj.107.118034. Epub 2008 Jan 30.
7
Evidence of cholesterol accumulated in high curvature regions: implication to the curvature elastic energy for lipid mixtures.
Biophys J. 2007 Apr 15;92(8):2819-30. doi: 10.1529/biophysj.106.097923. Epub 2007 Jan 26.
10
Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity.
Biochim Biophys Acta Biomembr. 2022 Feb 1;1864(1):183815. doi: 10.1016/j.bbamem.2021.183815. Epub 2021 Nov 5.

引用本文的文献

1
Cubic Phase-Inducible Zwitterionic Phospholipids Improve the Functional Delivery of mRNA.
Adv Sci (Weinh). 2025 May;12(17):e2413016. doi: 10.1002/advs.202413016. Epub 2025 Feb 17.
2
Comparing Multifunctional Viral and Eukaryotic Proteins for Generating Scission Necks in Membranes.
ACS Nano. 2024 Jun 18;18(24):15545-15556. doi: 10.1021/acsnano.4c00277. Epub 2024 Jun 5.
5
Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm.
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2301067120. doi: 10.1073/pnas.2301067120. Epub 2023 Jun 26.
6
Serinc5 Restricts HIV Membrane Fusion by Altering Lipid Order and Heterogeneity in the Viral Membrane.
ACS Infect Dis. 2023 Apr 14;9(4):773-784. doi: 10.1021/acsinfecdis.2c00478. Epub 2023 Mar 22.
7
Light-Responsive Supramolecular Nanotubes-Based Chiral Plasmonic Assemblies.
ACS Nano. 2023 Mar 28;17(6):5548-5560. doi: 10.1021/acsnano.2c10955. Epub 2023 Mar 10.
8
Simulated dynamic cholesterol redistribution favors membrane fusion pore constriction.
Biophys J. 2023 Jun 6;122(11):2162-2175. doi: 10.1016/j.bpj.2022.12.024. Epub 2022 Dec 31.
10
Simulation Best Practices for Lipid Membranes [Article v1.0].
Living J Comput Mol Sci. 2019 Jan 9;1(1). doi: 10.33011/livecoms.1.1.5966.

本文引用的文献

1
Inverse lyotropic phases of lipids and membrane curvature.
J Phys Condens Matter. 2006 Jul 19;18(28):S1105-24. doi: 10.1088/0953-8984/18/28/S01. Epub 2006 Jun 28.
3
Mechanics of membrane fusion.
Nat Struct Mol Biol. 2008 Jul;15(7):675-83. doi: 10.1038/nsmb.1455.
4
Mechanisms of membrane fusion: disparate players and common principles.
Nat Rev Mol Cell Biol. 2008 Jul;9(7):543-56. doi: 10.1038/nrm2417. Epub 2008 May 21.
5
Modulation of the spontaneous curvature and bending rigidity of lipid membranes by interfacially adsorbed amphipathic peptides.
J Phys Chem B. 2008 Jun 12;112(23):6988-96. doi: 10.1021/jp711107y. Epub 2008 May 14.
7
Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases.
Biophys J. 2008 May 15;94(10):3987-95. doi: 10.1529/biophysj.107.118034. Epub 2008 Jan 30.
8
Specific lipids supply critical negative spontaneous curvature--an essential component of native Ca2+-triggered membrane fusion.
Biophys J. 2008 May 15;94(10):3976-86. doi: 10.1529/biophysj.107.123984. Epub 2008 Jan 28.
9
HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates.
Biophys J. 2007 Sep 15;93(6):2048-55. doi: 10.1529/biophysj.107.109181. Epub 2007 May 25.
10
How synaptotagmin promotes membrane fusion.
Science. 2007 May 25;316(5828):1205-8. doi: 10.1126/science.1142614. Epub 2007 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验