Suppr超能文献

一种用于自动生成推论顺序的推荐算法。

A recommendation algorithm for automating corollary order generation.

作者信息

Klann Jeffrey, Schadow Gunther, McCoy J M

机构信息

Regenstrief Institute, Indianapolis, IN, USA.

出版信息

AMIA Annu Symp Proc. 2009 Nov 14;2009:333-7.

Abstract

Manual development and maintenance of decision support content is time-consuming and expensive. We explore recommendation algorithms, e-commerce data-mining tools that use collective order history to suggest purchases, to assist with this. In particular, previous work shows corollary order suggestions are amenable to automated data-mining techniques. Here, an item-based collaborative filtering algorithm augmented with association rule interestingness measures mined suggestions from 866,445 orders made in an inpatient hospital in 2007, generating 584 potential corollary orders. Our expert physician panel evaluated the top 92 and agreed 75.3% were clinically meaningful. Also, at least one felt 47.9% would be directly relevant in guideline development. This automated generation of a rough-cut of corollary orders confirms prior indications about automated tools in building decision support content. It is an important step toward computerized augmentation to decision support development, which could increase development efficiency and content quality while automatically capturing local standards.

摘要

手动开发和维护决策支持内容既耗时又昂贵。我们探索推荐算法,即利用集体订单历史来建议购买的电子商务数据挖掘工具,以协助完成这项工作。特别是,先前的研究表明,推论订单建议适用于自动化数据挖掘技术。在此,一种基于项目的协同过滤算法结合关联规则趣味性度量,从2007年一家住院医院的866445份订单中挖掘建议,生成了584个潜在的推论订单。我们的专家医师小组对前92个建议进行了评估,一致认为75.3%具有临床意义。此外,至少有一位专家认为47.9%的建议与指南制定直接相关。这种自动生成推论订单的粗略版本证实了之前关于自动化工具在构建决策支持内容方面的迹象。这是迈向决策支持开发的计算机化增强的重要一步,它可以提高开发效率和内容质量,同时自动捕捉当地标准。

相似文献

3
Decision support from local data: creating adaptive order menus from past clinician behavior.
J Biomed Inform. 2014 Apr;48:84-93. doi: 10.1016/j.jbi.2013.12.005. Epub 2013 Dec 16.
4
OrderRex: clinical order decision support and outcome predictions by data-mining electronic medical records.
J Am Med Inform Assoc. 2016 Mar;23(2):339-48. doi: 10.1093/jamia/ocv091. Epub 2015 Jul 21.
5
Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets.
J Am Med Inform Assoc. 2017 May 1;24(3):472-480. doi: 10.1093/jamia/ocw136.
6
The effect of medication related clinical decision support at the time of physician order entry.
Int J Clin Pharm. 2021 Feb;43(1):137-143. doi: 10.1007/s11096-020-01121-1. Epub 2020 Sep 29.
7
Mining for clinical expertise in (undocumented) order sets to power an order suggestion system.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:34-8. eCollection 2013.
8
Automatic detection of referral patients due to retinal pathologies through data mining.
Med Image Anal. 2016 Apr;29:47-64. doi: 10.1016/j.media.2015.12.006. Epub 2015 Dec 29.
9
To what extent do pediatricians accept computer-based dosing suggestions?
Pediatrics. 2007 Jan;119(1):e69-75. doi: 10.1542/peds.2006-1388.
10
Influence of data mining technology in information analysis of human resource management on macroscopic economic management.
PLoS One. 2021 May 18;16(5):e0251483. doi: 10.1371/journal.pone.0251483. eCollection 2021.

引用本文的文献

1
Graph-based clinical recommender: Predicting specialists procedure orders using graph representation learning.
J Biomed Inform. 2023 Jul;143:104407. doi: 10.1016/j.jbi.2023.104407. Epub 2023 Jun 3.
3
OrderRex clinical user testing: a randomized trial of recommender system decision support on simulated cases.
J Am Med Inform Assoc. 2020 Dec 9;27(12):1850-1859. doi: 10.1093/jamia/ocaa190.
4
Physician Usage and Acceptance of a Machine Learning Recommender System for Simulated Clinical Order Entry.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:89-97. eCollection 2020.
5
Predicting Inpatient Medication Orders From Electronic Health Record Data.
Clin Pharmacol Ther. 2020 Jul;108(1):145-154. doi: 10.1002/cpt.1826. Epub 2020 Apr 11.
6
Neural Networks for Clinical Order Decision Support.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:315-324. eCollection 2019.
8
An evaluation of clinical order patterns machine-learned from clinician cohorts stratified by patient mortality outcomes.
J Biomed Inform. 2018 Oct;86:109-119. doi: 10.1016/j.jbi.2018.09.005. Epub 2018 Sep 7.
9
Inpatient Clinical Order Patterns Machine-Learned From Teaching Versus Attending-Only Medical Services.
AMIA Jt Summits Transl Sci Proc. 2018 May 18;2017:226-235. eCollection 2018.
10
Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets.
Int J Med Inform. 2017 Jun;102:71-79. doi: 10.1016/j.ijmedinf.2017.03.006. Epub 2017 Mar 18.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验